请输入您要查询的字词:

 

单词 ProofOfVanAubelsTheorem
释义

proof of Van Aubel’s theorem


As in the figure, let us denote by u,v,w,x,y,z the areas of thesix component trianglesMathworldPlanetmath.Given any two triangles of the same height, their areas are in thesame proportion as their bases (Euclid VI.1). Therefore

y+zx=u+vw  w+xv=y+zu  u+vz=w+xy

and the conclusionMathworldPlanetmath we want is

y+z+uv+w+x+z+u+vw+x+y=y+zx.

Clearing the denominators, the hypotheses are

w(y+z)=x(u+v)(1)
y(u+v)=z(w+x)(2)
u(w+x)=v(y+z)(3)

which imply

vxz=uwy(4)

and the conclusion says that

x(wy¯+wz¯+uw+xy¯+xz¯+ux+y2¯+yz¯+uy
+vz+uv+v2+wz+uw+vw+xz+ux+vx)

equals

(y+z)(vw+vx+vy+w2+wx+wy+wx¯+x2¯+xy¯)

or equivalently (after cancelling the underlined terms)

x(uw+xz+ux+uy+vz+uv+v2+wz+uw+vw+ux+vx)

equals

(y+z)(vw+vx+vy+w2+wx+wy)=(y+z)(v+w)(w+x+y).

i.e.

x(u+v)(v+w+x)+x(xz+ux+uy+vz+wz+uw)=
(y+z)w(v+w+x)+(y+z)(vx+vy+wy)

i.e. by (1)

x(xz+ux+uy+vz+wz+uw)=(y+z)(vx+vy+wy)

i.e. by (3)

x(xz+uy+vz+wz)=(y+z)(vy+wy).

Using (4), we are down to

x2z+xuy+uwy+xwz=(y+z)y(v+w)

i.e. by (3)

x2z+vy(y+z)+xwz=(y+z)y(v+w)

i.e.

xz(x+w)=(y+z)yw.

But in view of (2), this is the same as (4), andthe proof is completePlanetmathPlanetmathPlanetmathPlanetmathPlanetmath.

Remarks: Ceva’s theoremMathworldPlanetmath is an easy consequence of (4).

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 16:07:51