请输入您要查询的字词:

 

单词 ProofOfWaringsFormula
释义

proof of Waring’s formula


The following is a proof of the Waring’s formula using formalpower series. We will work with formal power series inindeterminate z with coefficients in the ring[x1,,xn]. We also need the following equality

-log(1-z)=j=1zjj.

Taking log on both sides of

1-σ1z++(-1)nσnzn=m=1n(1-xmz),

we get

log(1-σ1z++(-1)nσnzn)=m=1nlog(1-xmz),(1)

Waring’s formula will follow by comparing the coefficients on bothsides.

The right hand side of the above equation equals

m=1nj=1xmjjzj

or

j=1(m=1nxmj)zjj

The coefficient of zk is equal to Sk/k.

On the other hand, the left hand side of (1) can be writtenas

j=11j(σ1z-σ2z2++(-1)n-1σnzn)j.

For each j, the coefficient of zk in

(σ1z-σ2z2++(-1)n-1σnzn)j

is

i1,,in(-1)i2+i4+i6+j!i1!in!σ1i1σnin,

where the summation is extended over all n-tuple(i1,,in) whose entries are non-negative integers, suchthat

i1+i2++in=j
i1+2i2++nin=k.

So the coefficient of zk in the left hand side of (1) is

j=1i1,,in(-1)i2+i4+i6+(j-1)!i1!in!σ1i1σnin,

or

(-1)i2+i4+i6+(i1++in-1)!i1!in!σ1i1σnin.

The last summation is over all (i1,,in)nwith non-negative entries such that i1+2i2++nin=k.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/25 16:02:16