请输入您要查询的字词:

 

单词 ProofThatAEuclideanDomainIsAPID
释义

proof that a Euclidean domain is a PID


Let D be a Euclidean domainMathworldPlanetmath, and let 𝔞D be a nonzero ideal. We show that 𝔞 is principal. Let

A={ν(x):x𝔞,x0}

be the set of Euclidean valuations of the non-zero elements of 𝔞. Since A is a non-empty set of non-negative integers, it has a minimum m. Choose d𝔞 such that ν(d)=m. Claim that 𝔞=(d). Clearly (d)𝔞. To see the reverse inclusion, choose x𝔞. Since D is a Euclidean domain, there exist elements y,rD such that

x=yd+r

with ν(r)<ν(d) or r=0. Since r𝔞 and ν(d) is minimal in A, we must have r=0. Thus d|x and x(d).

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 17:11:18