proof that η(1)=ln2Theorem 1.η(1)=ln2, where η is the Dirichlet eta function.Proof. By definition,η(1)=∑n=1∞(-1)n+1n=-∑n=1∞(-1)nn.Applying Abel’s Limit Theorem,η(1)=-limr→1-∑n=1∞(-r)nn=limr→1-ln(1+r)=ln2