请输入您要查询的字词:

 

单词 ProofThatTransitionFunctionsOfCotangentBundleAreValid
释义

proof that transition functions of cotangent bundle are valid


In this entry, we shall verify that the transition functionsMathworldPlanetmathPlanetmath proposed for the cotangent bundleMathworldPlanetmath the three criteria required by the classical definition of a manifold.

The first criterion is the easiest to verify. If α=β, then σαα reduces to the identity and we have

(σαα(x1,,x2n))i=(σαα(x1,,xn))i=xi  1in
(σαα(x1,,x2n))i+n=j=1n(σαα(x1,,xn))ixjxj+n=j=1nxixjxj+n=xi+n  1in

Thus we see that σαα is the identity map, as required.

Next, we turn our attention to the third criterion — showing that σβγσαβ=σαγ . For clarity of notation let us define yi=(σαβ)i(x1,x2n). Then we have

(σβγσαβ)i(x1,,x2n)=(σβγ)i(y1,,y2n)
=(σβγ)i(y1,,yn)
=(σβγσαβ)i(x1,,xn)
=(σαγ)i(x1,,xn)
=(σαγ)i(x1,,x2n)

when 1in.

(σβγσαβ)i+n(x1,,x2n)=(σβγ)i+n(y1,,y2n)
=j=1n(σβγ(y1,,yn))iyjyj+n
=j=1nk=1n(σβγ(y1,,yn))iyj(σαβ(x1,,xn))jxkxn+k
=k=1n(σβγσαβ(x1,,xn))ixkxn+k
=k=1n(σαγ(x1,,xn))ixkxn+k
=σαγ(x1,,x2n)

when 1in.

Finally, the second criterion does not need to be checked because it is a consequence of the first and third criteria.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 20:43:22