properties of hyperreals under field operations
Let denote the set of finite (or limited) hyperreal numbers and the set of infinitesimal hyperreal numbers.
- We have that
- 1.
and are subrings of .
- 2.
is an ideal of .
- 3.
the sum of an infinite
hyperreal with a finite hyperreal is infinite.
- 4.
the inverse
of a non-zero infinitesimal hyperreal is infinite.
- 5.
the inverse of an infinite hyperreal is infinitesimal.
The above properties can be described more informally like:
- 1.
finite finite finite
- 2.
infinitesimal infinitesimal infinitesimal
- 3.
infinite finite infinite
- 4.
finite finite finite
- 5.
infinitesimal finite infinitesimal
- 6.
infinitesimal infinite
- 7.
infinite infinitesimal