请输入您要查询的字词:

 

单词 PropertiesOfPoissonRandomVariables
释义

properties of Poisson random variables


Proposition 1.

If X1,X2 are independent Poisson random variables with parameters λ1,λ2, then X1+X2 is a Poisson random variable with parameter λ1+λ2.

Proof.

Let X:=X1+X2 and λ:=λ1+λ2, let us calculate the distribution functionMathworldPlanetmath of X:

FX(x)=P(Xx)=P(X1+X2x)=i=0xP(X1+X2=i)
=i=0xj=0iP(X1=j and X2=i-j)=i=0xj=0iP(X1=j)P(X2=i-j)
=i=0xj=0ie-λ1λ1jj!e-λ2λ2i-j(i-j)!=i=0xj=0ie-λi!(ij)λ1jλ2i-j
=i=0xe-λi!j=0i(ij)λ1jλ2i-j=i=0xe-λi!(λ1+λ2)i=i=0xe-λi!λi.

As a result, X is a Poisson random variable with parameter λ. Notice that in the fifth equation, we used the assumption that X1 and X2 are independent.∎

As a corollary, any sum of independent Poisson random variables is Poisson, with parameter the sum of the parameters from the independent random variablesMathworldPlanetmath.

Proposition 2.

A Poisson random variable is infinitely divisible.

Proof.

Let X be a Poisson random variable with parameter λ. Let n be any positive integer. Let X1,,Xn be independent identically distributed Poisson random variables with parameter λn. Then the sum of these random variables is easily seen to be Poisson, with parameter λ, and is therefore identically distributed as X.∎

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 7:12:54