请输入您要查询的字词:

 

单词 PropertyOfUniformlyConvexBanachSpace
释义

property of uniformly convex Banach Space


Theorem 1.

Let X be a uniformly convex Banach spaceMathworldPlanetmath. Let (xn) be a sequence in X such that limxn=x in the weak-topology (w(X,X*)) and lim supxnx.Then xn converges to x.

Proof.

For x=0 the claim is obvious, so suppose that x0.The sequence (xn)n1 converges to x for w-topology xlim infxn.So let λn=max{x,xn} and we have that limλn=x.Define yn=xnλn and y=xx.Then yn converges to y in w-topology.We conclude that ylim infyn+y2. Also, y=1,yn1 so we have that limyn+y2=1. As the Banach space is uniformly convex one can easily see thatlimyn-y=0. Therefore xn converges to x. The proof is complete.∎

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 8:36:08