请输入您要查询的字词:

 

单词 AnalyticContinuationOfGammaFunction
释义

analytic continuation of gamma function


The last of the parent entry (http://planetmath.org/GammaFunction) may be expressed as

Γ(z)=Γ(z+n)z(z+1)(z+2)(z+n-1).(1)

According to the standard definition

Γ(z):=0e-ttz-1𝑑t,

the left hand side of (1) is defined only in the right half-plane  z>0, whereas the expression Γ(z+n) is defined and holomorphic for  z>-n and thus the right hand side of (1) is holomorphic in the half-plane  z>-n except the points

0,-1,-2,,-(n-1)

where it has the poles of order 1.  Because the both sides of (1) are equal for z>0,  the left side of (1) is the analytic continuation of Γ(z) tothe half-plane  z>-n.  And since the positive integer n can be chosenarbitrarily, the Euler’s Γ-functionMathworldPlanetmath has been defined analytically to the wholecomplex planeMathworldPlanetmath.

Accordingly, the gamma functionDlmfDlmfMathworldPlanetmath is unambiguous and holomorphic everywhere in except in the points

0,-1,-2,-3,(2)

which are poles of order 1 of the function.  Hence, Γ(z)is a meromorphic function.

For determining the residueDlmfMathworldPlanetmath of the function in the points (2), we rewrite the equation (1) as

Γ(z)=Γ(z+n+1)z(z+1)(z+2)(z+n).

In the point  z=-n  we have

Γ(z+n+1)=Γ(1)= 0!= 1,

which implies (see the rule in the entry coefficients of Laurent series) that

Res(Γ;-n)=(-1)nn!.

References

  • 1 R. Nevanlinna & V. Paatero: Funktioteoria.  Kustannusosakeyhtiö Otava. Helsinki (1963).
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 6:01:00