请输入您要查询的字词:

 

单词 ReductionFormulasForIntegrationOfPowers
释义

reduction formulas for integration of powers


The following reduction formulas, with integer n and via integration by parts, may be used for lowing (n>0) or raising (n<0) the the powers:

  • sinnxdx=-1nsinn-1xcosx+n-1nsinn-2xdx  (n0)

  • cosnxdx=1ncosn-1xsinx+n-1ncosn-2xdx  (n0)

  • (lnx)ndx=x(lnx)n-n(lnx)n-1dx  (n0)

  • 1(1+x2)ndx=12n-2x(1+x2)n-1+2n-32n-21(1+x2)n-1dx(n>1)

Example.  For finding dxsin3x, we apply the first formula with  n:=-1,  getting first

dxsinx=-1-1cosxsin2x+-2-1dxsin3x.

From this we solve

dxsin3x=-12cosxsin2x+dxsinx=-12cosxsin2x+ln|tanx2|+C

(see integration of rational function of sine and cosine).

Note 1.  Instead of the two first formulae, it is simpler in the cases when n is a positive odd or a negative even numberMathworldPlanetmath to use the following
sin2m+1xdx=sin2mxsinxdx=-(1-cos2x)m(-sinx)𝑑x,
cos2m+1xdx=cos2mxcosxdx=(1-sin2x)mcosxdx,
1sin2mx𝑑x=1sin2m-2x1sin2x𝑑x=-(1+cot2x)m-1dcotx,
1cos2mx𝑑x=1cos2m-2x1cos2x𝑑x=(1+tan2x)m-1dtanx,
which may be found after making the powers on the right hand sides to polynomialsPlanetmathPlanetmath.

Note 2.tannxdx  (n+)  is obtained easily by the substitution (http://planetmath.org/IntegrationBySubstitution)  tanx:=t,  dx=dtt2+1  and a division; e.g.

tan5xdx=t5t2+1𝑑t=(t3-t+tt2+1)𝑑t
=t44-t22+12ln(t2+1)+C
=tan4x4-tan2x2+lntan2x+1+C.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 11:59:57