Tarski’s result on the undefinability of truth
Assume is a logic which is under contradictory negation and has the usual truth-functional connectives
. Assume also that has a notion of formula
with one variable and of substitution. Assume that is a theory of in which we can define surrogates for formulae of , and in which all true instances of the substitution relation
and the truth-functional connective relations are provable. We show that either is inconsistent or can’t be augmented with a truth predicate
for which the following T-schema holds
Assume that the formulae with one variable of have been indexed by some suitable set that is representable in (otherwise the predicate would be next to useless, since if there’s no way to speak of sentences of a logic, there’s little hope to define a truth-predicate for it). Denote the :th element in this indexing by . Consider now the following open formula with one variable
Now, since is an open formula with one free variable it’s indexed by some . Now consider the sentence . From the T-schema we know that
and by the definition of and the fact that is the of we have
which clearly is absurd. Thus there can’t be an of with a predicate for which the T-schema holds.
We have made several assumptions on the logic which are crucial in order for this proof to go through. The most important is that is closed under contradictory negation. There are logics which allow truth-predicates, but these are not usually closed under contradictory negation (so that it’s possible that is neither true nor false). These logics usually have stronger notions of negation, so that a sentence says more than just that is not true, and the proposition
that is simply not true is not expressible.
An example of a logic for which Tarski’s undefinability result does not hold is the so-called Independence Friendly logic, the semantics of which is based on game theory and which allows various generalised quantifiers (the Henkin branching quantifier, etc.) to be used.