reverse Markov inequalityLet X be a random variable that satisfies Pr(X≤a)=1 for some constant a.Then, for d<E[X],Pr(X>d)≥E[X]-da-dProof:Apply the Markov’s inequality to the random variable X~=a-X,Pr(X≤d)=Pr(X~≥a-d)≤E[X~]a-d=a-E[X]a-d.HencePr(X>d)≥1-a-E[X]a-d=E[X]-da-d.