请输入您要查询的字词:

 

单词 Riemannthetafunction
释义

Riemann θ-function


The Riemann theta functionDlmfDlmfMathworldPlanetmath is a number-theoretic functionwhich is only really used inthe derivation of the functional equation for the Riemann xi function.

The Riemann theta function is defined as:

θ(x)=2ω(x)+1,

where ω is the Riemann omega function.

The domain (http://planetmath.org/FunctionMathworldPlanetmath) of the Riemann theta function is x>0.

To give an explicit form for the theta functionDlmfMathworld, note that

ω(x)=n=1e-n2πx
=n=-1-e-(-n)2πx
=n=-1-e-n2πx

and so

2ω(x)+1=n=-1-e-n2πx+ω(x)+1
=n=-1-e-n2πx+n=1e-n2πx+e-02πx
=n=-e-n2πx.

Thus we have

θ(x)=n=-e-n2πx.

Riemann showed that the theta function satisfied a functional equation,which was the key stepin the proof of the analytic continuation for the Riemann xi function.This has direct consequences for the Riemann zeta functionDlmfDlmfMathworldPlanetmath.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/5 2:19:30