请输入您要查询的字词:

 

单词 RingHierarchy
释义

ring hierarchy


Figure 1: Diagram of the hierarchy of rings.

The objects in the diagram reflect many of the common rings encountered in ring theory.

  • Every ring considered here has a 1.

  • When one class of rings is connected to another class by a line, then the lower class is a subclass of the higher placed class.

  • If a class has more than one parent in the graph it is not always the case that this class represents the strict intersectionMathworldPlanetmath of these two classes, but it is certainly contained in this intersection.

  • Many of these containments are trivial in the sense that they are defined as subclasses of one another. For instance, principal ideal domainMathworldPlanetmath is by definition a domain.

  • However some subclasses are the result of deep theorems. For example, every artinian ring is also noetherianPlanetmathPlanetmathPlanetmath.

List of common rings

  1. 1.

    Ring.

  2. 2.

    Commutative ring.

  3. 3.

    Noetherian ring (http://planetmath.org/Noetherian).

  4. 4.

    Jacobson semisimple ring.

  5. 5.

    Local ringMathworldPlanetmath.

  6. 6.

    Integral domainMathworldPlanetmath.

  7. 7.

    Artinian ring (http://planetmath.org/ArtinianPlanetmathPlanetmath).

  8. 8.

    Primitive ring.

  9. 9.

    Unique factorization domainMathworldPlanetmath (UFD).

  10. 10.

    Dedekind domainMathworldPlanetmath.

  11. 11.

    Semisimple ring.

  12. 12.

    Principal ideal domain (PID) (http://planetmath.org/PrincipalIdealDomain).

  13. 13.

    Simple ringMathworldPlanetmath.

  14. 14.

    Discrete valuation domain (DVD) (http://planetmath.org/DiscreteValuationRing) (Alsocalled a Discrete valuation ring).

  15. 15.

    Euclidean domainMathworldPlanetmath.

  16. 16.

    Division ring.

  17. 17.

    Field.

The following containments are definitional:

  • Ring > commutative ring, noetherian ring and Jacobson semisimple ring.

  • Commutative ring > local ring and integral domain.

  • Integral domain > unique factorization domain and Dedekind domain.

  • Semisimple rings > simple rings.

  • Local rings > Discrete valuation domains.

  • Principal ideal domains > Discrete valuation domains.

  • Division rings > fields.

The following containments are due to theorems:

  1. 1.

    Jacobson semisimple rings > primitive rings [2, p. 571].

  2. 2.

    Noetherian rings > artinian rings [Hopkins-Levitzki] [2, Theorem 8.46].

  3. 3.

    Noetherian rings > Dedekind domain [1, Theorem VIII.6.10].

  4. 4.

    Artinian rings > semisimple rings, [Wedderburn-Artin theorem].11Some definitions semisimplePlanetmathPlanetmathPlanetmath make this containment part of the definition. Otherwise the result is part of the Wedderburn-Artin theorem.

  5. 5.

    Jacobson semisimple > semisimple rings.[Wedderburn-Artin theorem].22Also depends on the definition of semisimple.

  6. 6.

    Dedekind domain > Principal ideal domain [1, p. 401].

  7. 7.

    Principal ideal domains > euclidean domains [2, Theorem 3.60].

  8. 8.

    Simple rings > division rings.

References

  • 1 Hungerford, Thomas W.Algebra, Graduate Texts in Mathematics, 73Springer-Verlag, New York, (1980), pp. xxiii+502.
  • 2 Rotman, Joseph J.Advanced modern algebra,Prentice Hall Inc.,Upper Saddle River, NJ, (2002), pp xvi+1012+A8+B6+I14.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 5:45:56