请输入您要查询的字词:

 

单词 RotationalInvarianceOfCrossProduct
释义

rotational invariance of cross product


Theorem
Let R be a rotational 3×3 matrix, i.e., a realmatrix with det𝐑=1 and 𝐑-1=𝐑T.Then for all vectors 𝐮,𝐯 in 3,

𝐑(𝐮×𝐯)=(𝐑𝐮)×(𝐑𝐯).

Proof.Let us first fix some right hand oriented orthonormal basis in 3.Further, let {u1,u2,u3} and {v1,v2,v3} be the componentsMathworldPlanetmathPlanetmathPlanetmathof u andv in that basis. Also, in the chosen basis, we denote the entriesof R by Rij. Since R is rotational, we haveRijRkj=δik where δik is theKronecker delta symbol. Here we use the Einstein summation convention.Thus, in the previous expression, on the left hand side, j should be summedover 1,2,3. We shall use theLevi-Civita permutation symbol ε to write the cross productMathworldPlanetmath.Then the i:th coordinate of 𝐮×𝐯 equals(𝐮×𝐯)i=εijkujvk.For the kth component of (𝐑𝐮)×(𝐑𝐯) wethen have

((𝐑𝐮)×(𝐑𝐯))k=εimkRijRmnujvn
=εimlδklRijRmnujvn
=εimlRkrRlrRijRmnujvn
=εjnrdet𝐑Rkrujvn.

The last line follows sinceεijkRimRjnRkr=εmnrεijkRi1Rj2Rk3=εmnrdet𝐑.Since det𝐑=1, it follows that

((𝐑𝐮)×(𝐑𝐯))k=Rkrεjnrujvn
=Rkr(𝐮×𝐯)r
=(𝐑𝐮×𝐯)k

as claimed.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/5 1:28:17