请输入您要查询的字词:

 

单词 SchursTest
释义

Schur’s Test


Theorem 1.

(Schur’s Test) Let (X,μ) be a measure spaceMathworldPlanetmath (μ a positive measure). Let K be a positive, measurable functionMathworldPlanetmath on X×X. Define the operator

Tf(x):=XK(x,y)f(y)𝑑μ(y),xX

If for some 1<p< there exists a measurable, strictly positive function h and a constant M>0 such that

XK(x,y)h(y)q𝑑μ(y)Mh(x)q
XK(x,y)h(x)p𝑑μ(x)Mh(y)p

with p-1+q-1=1, then ||T||M in Lp(X,dμ).

Proof.

Let fLp(X,dμ). We have

|Tf(x)|Xh(y)h(y)-1|f(y)|K(x,y)𝑑μ(y)

hence by Hoelder’s inequalityMathworldPlanetmath

|Tf(x)|[XK(x,y)h(y)q𝑑μ(y)]1q[XK(x,y)h(y)-p|f(y)|p𝑑μ(y)]1p

By the first inequality in the assumptionPlanetmathPlanetmath we have

|Tf(x)|M1qh(x)[XK(x,y)h(y)-p|f(y)|p𝑑μ(y)]1p

Evaluating ||Tf||pp by Fubini and the second inequality in the assumption we obtain

X|Tf(x)|p𝑑μ(x)MpX|f(y)|p𝑑μ(y)

This completesPlanetmathPlanetmathPlanetmathPlanetmath the proof.∎

A noted special case is Young’s Inequality

Corollary 1.

(Young)

Let K:Rn×RnC be Borel-measurable such that there is a constant C>0 with

supxnn|K(x,y)|𝑑λn(y)C
supynn|K(x,y)|𝑑λn(x)C

For fLp(Rn) (1p+) define

T(f)(x):=nK(x,y)f(y)𝑑λn(y)

Then ||Tf||pC||f||p.

References

  • (Hedenmalm 2000) H. Hedenmalm, Boris Korenblum, Kehe Zhu Theory of Bergman spaces, Springer Verlag, New York, 2000
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 8:41:39