请输入您要查询的字词:

 

单词 SelmerGroup
释义

Selmer group


Given an elliptic curveMathworldPlanetmath E we can define two very interesting andimportant groups, the Selmer groupMathworldPlanetmath and theTate-Shafarevich group, which together provide a measure ofthe failure of the Hasse principleMathworldPlanetmath for elliptic curves, bymeasuring whether the curve is everywhere locally soluble. Here wepresent the construction of these groups.

Let E,E be elliptic curves defined over and let¯ be an algebraic closureMathworldPlanetmath of . Letϕ:EE be an non-constant isogenyMathworldPlanetmath (for example, wecan let E=E and think of ϕ as being the “multiplicationby n” map, [n]:EE). The following standard resultasserts that ϕ is surjective over ¯:

Theorem 1.

Let C1,C2 be curves defined over an algebraically closed fieldK and let

ψ:C1C2

be a morphismMathworldPlanetmath (oralgebraic map) of curves. Then ψ is either constant orsurjective.

Proof.

See [4], Chapter II.6.8.∎

Since ϕ:E(¯)E(¯) isnon-constant, it must be surjective and we obtain the followingexact sequencePlanetmathPlanetmathPlanetmath:

0E(¯)[ϕ]E(¯)E(¯)0  (1)

where E(¯)[ϕ]=Kerϕ. LetG=Gal(¯/), theabsolute Galois group of , and consider theith-cohomology groupPlanetmathPlanetmath Hi(G,E(¯)) (weabbreviate by Hi(G,E)). Using equation (1) we obtain thefollowing long exact sequence (see Proposition 1 in groupcohomologyMathworldPlanetmathPlanetmath):

0H0(G,E(¯)[ϕ])H0(G,E)H0(G,E)H1(G,E(¯)[ϕ])H1(G,E)H1(G,E)  (2)

Note that

H0(G,E(¯)[ϕ])=(E(¯)[ϕ])G=E()[ϕ]

and similarly

H0(G,E)=E(),H0(G,E)=E()

From (2) we can obtain an exact sequence:

0E()/ϕ(E())H1(G,E(¯)[ϕ])H1(G,E)[ϕ]0

We could repeat the same procedure but this time for E,Edefined over p,for some prime numberMathworldPlanetmath p, and obtaina similar exact sequence but with coefficients in pwhich relates to the original in the following commutative diagramMathworldPlanetmath(here Gp=Gal(p¯/p)):

0E()/ϕ(E())H1(G,E(¯)[ϕ])H1(G,E)[ϕ]0
  
0E(p)/ϕ(E(p))H1(Gp,E(p¯)[ϕ])H1(Gp,E)[ϕ]0

The goal here is to find a finite group containingE()/ϕ(E()). UnfortunatelyH1(G,E(¯)[ϕ]) is not necessarily finite. Withthis purpose in mind, we define the ϕ-Selmer group:

Sϕ(E/)=Ker(H1(G,E(¯)[ϕ])pH1(Gp,E))

Equivalently, the ϕ-Selmer group is the set ofelements γ of H1(G,E(¯)[ϕ]) whoseimage γp in H1(Gp,E(𝕡¯)[ϕ]) comesfrom some element in E(p).

Finally, by imitation of the definition of the Selmer group, wedefine the Tate-Shafarevich group:

TS(E/)=Ker(H1(G,E)pH1(Gp,E))

The Tate-Shafarevich group is precisely the group that measuresthe Hasse principle in the elliptic curve E. It is unknown ifthis group is finite.

References

  • 1 J.P. Serre, Galois Cohomology,Springer-Verlag, New York.
  • 2 James Milne, Elliptic Curves, http://www.jmilne.org/math/CourseNotes/math679.htmlonline coursenotes.
  • 3 Joseph H. Silverman, The Arithmetic of Elliptic Curves. Springer-Verlag, New York, 1986.
  • 4 R. Hartshorne, Algebraic GeometryMathworldPlanetmathPlanetmathPlanetmath,Springer-Verlag, 1977.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/6/20 11:31:32