请输入您要查询的字词:

 

单词 SimilarMatrix
释义

similar matrix


Definition

A square matrixMathworldPlanetmath A is similarMathworldPlanetmathPlanetmathPlanetmath (or conjugatePlanetmathPlanetmath) to a square matrix B if there exists a nonsingular square matrix S such that

A=S-1BS.(1)

Note that, given S as above, we can define R=S-1 and have A=RBR-1. Thus, whether the inversePlanetmathPlanetmathPlanetmathPlanetmathPlanetmath comes first or last does not matter.

TransformationsMathworldPlanetmath of the form S-1BS (or SBS-1) are called similarity transformations.

Discussion

Similarity is useful for turning recalcitrant matrices into pliant ones. The canonical example is that a diagonalizable matrixMathworldPlanetmath A is similar to the diagonal matrixMathworldPlanetmath of its eigenvaluesMathworldPlanetmathPlanetmathPlanetmathPlanetmath Λ, with the matrix of its eigenvectorsMathworldPlanetmathPlanetmathPlanetmath acting as the similarity transformation. That is,

A=TΛT-1(2)
=[v1v2vn][λ100λ2λn][v1v2vn]-1.(3)

This follows directly from the equation defining eigenvalues and eigenvectors,

AT=TΛ.(4)

If A is symmetricMathworldPlanetmathPlanetmathPlanetmathPlanetmath (http://planetmath.org/SymmetricMatrix) for example, then through this transformation, we have turned A into the productPlanetmathPlanetmath of two orthogonal matricesMathworldPlanetmath and a diagonal matrix. This can be very useful. As an application, see the solution for the normalizing constant of a multidimensional Gaussian integral.

Properties of similar matrices

  1. 1.

    Similarity is reflexiveMathworldPlanetmathPlanetmathPlanetmath (http://planetmath.org/Reflexive): All square matrices A are similar to themselves via the similarity transformation A=I-1AI, where I is the identity matrixMathworldPlanetmath with the same dimensionsPlanetmathPlanetmath as A.

  2. 2.

    Similarity is symmetric (http://planetmath.org/Symmetric): If A is similar to B, then B is similar to A, as we can define a matrix R=S-1 and have

    B=R-1AR(5)
  3. 3.

    Similarity is transitiveMathworldPlanetmathPlanetmathPlanetmath (http://planetmath.org/Transitive3): If A is similar to B, which is similar to C, we have

    A=S-1BS=S-1(R-1CR)S=(S-1R-1)C(RS)=(RS)-1C(RS).(6)
  4. 4.

    Because of 1, 2 and 3, similarity defines an equivalence relationMathworldPlanetmath () on square matrices, partitioning (http://planetmath.org/PartitionMathworldPlanetmathPlanetmath) the space of such matrices into a disjoint set of equivalence classesMathworldPlanetmath.

  5. 5.

    If A is similar to B, then their determinantsMathworldPlanetmath are equal; i.e. (http://planetmath.org/Ie), detA=detB. This is easily verified:

    detA=det(S-1BS)=det(S-1)detBdetS=(detS)-1detBdetS=detB.(7)

    In fact, similar matrices have the same characteristic polynomialMathworldPlanetmathPlanetmath, which implies this result directly, the determinant being the constant term of the characteristic polynomial (up to sign).

  6. 6.

    Similar matrices represent the same linear transformation after a change of basis.

  7. 7.

    It can be shown that a matrix A and its transposeMathworldPlanetmath AT are always similar.

Titlesimilar matrix
Canonical nameSimilarMatrix
Date of creation2013-03-22 12:24:37
Last modified on2013-03-22 12:24:37
OwnerWkbj79 (1863)
Last modified byWkbj79 (1863)
Numerical id19
AuthorWkbj79 (1863)
Entry typeDefinition
Classificationmsc 15A03
Synonymsimilarity transformation
Synonymsimilar matrices
Synonymconjugate matrices
Related topicEigenvalue
Related topicEigenvector
Related topicEigenvalueProblem
Definessimilar
Definesconjugate
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 8:59:01