请输入您要查询的字词:

 

单词 SincIsL2
释义

sinc is L2


Our objective will be to prove the integral f2(x)𝑑x exists in the Lebesgue sense when f(x)=sinc(x).

The integrand is an even function and so we can restrict our proof to the set +.

Since f is a continuous functionMathworldPlanetmathPlanetmath, so will f2 be and thus for every a>0, fL2([0,a]).

Thus, if we prove fL2([π,[), the result will be proved.

Consider the intervals Ik=[kπ,(k+1)π] and Uk=i=1kIk=[π,(k+1)π].

and the succession of functions fn(x)=f2(x)χUn(x), where χUn is the characteristic functionMathworldPlanetmathPlanetmathPlanetmath of the set Un.

Each fn is a continuous function of compact support and will thus be integrable in +. Furthermore fn(x)f2(x) (pointwise) in this set.

In each Ik,0f2(x)sin2(x)(kπ)2, for k>0.

So:

xπfn(x)𝑑x=k=1nkπ(k+1)πsin(x)2x2𝑑xk=1nkπ(k+1)πsin(x)2(kπ)2=k=1n12k2π11we have used the well known result 0πsin2(x)𝑑x=π2

So: limnxπfn(x)𝑑xlimnk=1n12k2π and since the series on the right side converges22asymptotic behaviour as k-2 and fnf2 we can use the monotone convergence theoremMathworldPlanetmath to state that f2L([π,[).

So we get the result that sincL2()

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 21:41:59