请输入您要查询的字词:

 

单词 SlowerConvergentSeries
释义

slower convergent series


Theorem.

If

a1+a2+a3+(1)

is a converging series with positive , then one can always form another converging series

g1+g2+g3+

such that

limngnan=(2)

Proof.  Let S be the sum of (1),  Sn=a1+a2++an  the nth partial sum of (1) and  Rn+1=S-Sn=an+1+an+2+  the corresponding remainder term.  Then we have

an=Rn-Rn+1=(Rn+Rn+1)(Rn-Rn+1).

We set

gn:=anRn+Rn+1=Rn-Rn+1n=1, 2, 3,

Then the series  g1+g2+g3+  fulfils the requirements in the theorem.  Its gn are positive.  Further, it converges because its nth partial sum is equal toR1-Rn+1 which tends to the limit R1=S  as  n  since  Rn+10;  this implies also (2).

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 4:32:26