请输入您要查询的字词:

 

单词 AntipodalMapOnSnIsHomotopicToTheIdentityIfAndOnlyIfNIsOdd
释义

antipodal map on Sn is homotopic to the identity if and only if n is odd


Lemma.

If X:SnSn is a unit vectorMathworldPlanetmath field, thenthere is a homotopy between the antipodal map on Snand the identity map.

Proof.

Regard Sn as a subspacePlanetmathPlanetmathPlanetmath of Rn+1 and defineH:Sn×[0,1]Rn+1 byH(v,t)=(cosπt)v+(sinπt)X(v). Since X is a unitvector field, X(v)v for any vSn. HenceH(v,t)=1, so H is into Sn. Finally observe thatH(v,0)=v and H(v,1)=-v. Thus H is a homotopy betweenthe antipodal map and the identity map.∎

Proposition.

The antipodal map A:SnSn is homotopicto the identity if and only if n is odd.

Proof.

If n is even, then the antipodal map A is the compositionMathworldPlanetmathPlanetmathof an odd of reflectionsMathworldPlanetmath. Ittherefore has degree -1. Since the degree of the identitymap is +1, the two maps are not homotopic.

Now suppose n is odd, say n=2k-1. Regard Sn has asubspace of 2k. So each point of Sn hascoordinatesMathworldPlanetmathPlanetmath (x1,,x2k) with ixi2=1. Definea map X:2k2k byX(x1,x2,,x2k-1,x2k)=(-x2,x1,,-x2k,x2k-1),pairwise swapping coordinates and negating the even coordinates.By construction, for any vSn, we have that X(v)=1and X(v)v. Hence X is a unit vector field. Applying thelemma, we conclude that the antipodal map is homotopic to the identity.∎

References

  • 1 Hatcher, A. Algebraic topology, Cambridge University Press, 2002.
  • 2 Munkres, J. Elements of algebraic topology, Addison-Wesley, 1984.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/25 7:51:34