请输入您要查询的字词:

 

单词 ApplicationOfCauchySchwarzInequality
释义

application of Cauchy–Schwarz inequality


In determining the perimetre of ellipse one encounters the elliptic integralMathworldPlanetmath

0π21-ε2sin2t𝑑t,

where the parametre ε is the eccentricity of the ellipse (0ε<1).  A good upper bound for the integralDlmfPlanetmath is obtained by utilising the http://planetmath.org/node/1628Cauchy–Schwarz inequality

|abfg|abf2abg2

choosing in it  f(t):=1  and  g(t):=1-ε2sin2t.  Then we get

0<0π21-ε2sin2t𝑑t0π212𝑑t0π2(1-ε2sin2t)𝑑t
=π20π2(1-ε21-cos2t2)𝑑t
=π21-ε22.

Thus we have the estimation

0π21-ε2sin2t𝑑tπ21-ε22.

It is the better approximation for the perimetre of ellipse the smaller is its eccentricity, i.e. the closer the ellipse is to circle.  The accuracy is O(ε4)

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 4:06:14