请输入您要查询的字词:

 

单词 ApplicationOfFundamentalTheoremOfIntegralCalculus
释义

application of fundamental theorem of integral calculus


We will derive the addition formulasPlanetmathPlanetmath of the sine and the cosine functions supposing known only their derivatives and the chain ruleMathworldPlanetmath.

Define the functionMathworldPlanetmathF:  through

F(x):=[sinxcosα+cosxsinα-sin(x+α)]2+[cosxcosα-sinxsinα-cos(x+α)]2

where α is, for the , a constant.  The derivative of F is easily calculated:
F(x)= 2[sinxcosα+cosxsinα-sin(x+α)][cosxcosα-sinxsinα-cos(x+α)]+2[cosxcosα-sinxsinα-cos(x+α)][-sinxcosα-cosxsinα+sin(x+α)]

But this expression is identically 0.  By the fundamental theorem of integral calculus, F must be a constant function.  Since  F(0)=0,  we have

F(x) 0

for any x and naturally also for any α.  Because F(x) is a sum of two squares, the both addends of it have to vanish identically, which yields the equalities

sinxcosα+cosxsinα-sin(x+α)= 0,cosxcosα-sinxsinα-cos(x+α)= 0.

These the addition formulas (http://planetmath.org/GoniometricFormulae)

sin(x+α)=sinxcosα+cosxsinα,
cos(x+α)=cosxcosα-sinxsinα.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/25 12:37:20