请输入您要查询的字词:

 

单词 ApproximatingFourierIntegralsWithDiscreteFourierTransforms
释义

approximating Fourier integrals with discrete Fourier transforms


Suppose we have a continuous functionMathworldPlanetmath f:νfor which we want to numericallycompute the continuous Fourier transformMathworldPlanetmath:

f^(ξ)=νf(x)e-2πiξx𝑑x,ξν.

Assume that either the function f is supportedinside the compact rectangleC=[a1,b1]××[aν,bν],or that the Fourier integral is well approximatedby truncating the domain to C.

We develop an approximation to f^based on the discrete Fourier transformMathworldPlanetmath(which can be computed efficiently using the fast Fourier transformalgorithmMathworldPlanetmath), and analyze the error in making this approximation.

Derivation

Performing the linear substitution

tj=x-ajbj-aj,j=1,,ν,

we find that

Cf(x)e-2πiξx𝑑x
=Vol(C)e-2πiξa0101g(t)e-2πi((b1-a1)ξ1t1++(bν-aν)ξνtν)𝑑t1𝑑tν
=Vol(C)e-2πiξag^((b1-a1)ξ1,,(bν-aν)ξν),

where

g(t1,,tν)=f(a1+(b1-a1)t1,,aν+(bν-aν)tν),tj[0,1],

and g^ denotes the Fourier transform of g on the unit cube [0,1]ν.

Let u denote the vector with componentsPlanetmathPlanetmathu(k1,,kν)=g(k1/N,,kν/N), for kj=0,,N-1.The discrete Fourier transformof u is

u^(l)=k{0,,N-1}νu(k)e-2πikl/N,l={0,,N-1}ν,

and approximates Nνg^(l)since it is a Riemann sum (step size 1/N) for the Fourier integral.

Therefore, for lj=0,,N-1,we have the approximation:

f^(l1b1-a1,,lνbν-aν)Vol(C)Nνe-2πi(a1l1b1-a1++aνlνbν-aν)u^(l).

Analysing the error

Assume that g can be represented by a pointwise-convergent11Since the discrete Fourier transform requires sampling of points, 𝐋2convergence of the Fourier seriesMathworldPlanetmath is not sufficient. Also, the Fourier seriesmay only be conditionally convergent. If there are difficulties in assuringits convergence, Fejér summation can beused instead in this analysis.Fourier series:

g(t)=kνg,EkEk(t),

where

Ek(t)=e2πikt,α,β=[0,1]να(t)β(t)¯𝑑t.

The Fourier coefficient of g isg^(l)=g,El, and in contrastu^(l)=Nνg,EkN, where:

α,βN=1Nνk{0,,N-1}να(k/N)β(k/N)¯

is a positive semi-definite inner product.

We have the exact formula:

f^(l1b1-a1,,lνbν-aν)=Vol(C)e-2πi(a1l1b1-a1++aνlνbν-aν)g^(l);

and we wish to know what error is introducedif we were to replace g^(l)=g,Elby the discrete version of the inner productMathworldPlanetmath g,ElN=u^(l)/Nν.

Expand g,ElN as:

g,ElN=kνg,EkEk,ElN=kνg,EkEk,ElN.

Since Ek,ElN is 1 if kjlj(modN) for all j,and is 0 otherwise,the discrete inner product reduces to:

g,ElN=kνg,El+kN=g,El+kν{0}g,El+kN.

In other words, the approximation entails replacingthe true Fourier coefficient g^(l)with the same coefficientplus other Fourier coefficients g,El+kNcorresponding to higherfrequencies, in multiplesMathworldPlanetmath of N.The magnitude of the approximation errorfor f^thus depends on how fast the partial sumsof the Fourier coefficients g,Ek decay to zero.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 3:43:13