请输入您要查询的字词:

 

单词 AreaBoundedByArcAndTwoLines
释义

area bounded by arc and two lines


Let  r=r(φ)  be the equation of a continuousMathworldPlanetmath curve in polar coordinatesMathworldPlanetmath and A be the area of the planar region by the curve and the line segmentsMathworldPlanetmath from the origin to two points of the curve corresponding the polar anglesMathworldPlanetmath α and β (>α).  Then the area can be calculated from

A=12αβ[r(φ)]2𝑑φ.(1)

Proof.  We fit between α and β a set of values

φ1<φ2<<φn-1(2)

and denote  α=φ0,  β=φn  and think the line segments from the origin to each point of the curve corresponding the values φi.  Then the region is divided into n parts.  For every part we form inscribedMathworldPlanetmath and circumscribedMathworldPlanetmath circular sector with the common tip in the origin and the radii along the lines φ=φi.  The union of the inscribed sectors is contained in the region and the union of the circumscribed sectors contains the region.  The unions have the areas

i=1n12ri2(φi-φi-1)andi=1n12Ri2(φi-φi-1),

where ri means the least and Ri the greatest value of r(φ) on the intervalMathworldPlanetmathPlanetmath[φi-1,φi].  Hence the area A is between these sums for any division of the interval  [α,β]  with the values of (2).  But by the definition of the Riemann integral we know that there is only one real number having this property for any division and that also the definite integral

αβ12[r(φ)]2𝑑φ=12αβ[r(φ)]2𝑑φ

is between those sums.  Q.E.D.

Example 1.  Determine the area A enclosed by the lemniscate of Bernoulli  r=cos2φ.

The portion of the lemniscateMathworldPlanetmath situated in the first quadrantMathworldPlanetmath is gotten when φ gets the values from 0 to π4, whence we have

A4=120π4(acos2φ)2𝑑φ=a220π4cos2φdφ=a22/0π4sin2φ2=a24

and therefore the whole area in question is a2.

Example 2.  Determine the area A enclosed by the logarithmic spiralMathworldPlanetmathr=Cekφ  and two radii  r1:=Cekφ1  and  r2:=Cekφ2  (k>0,  φ1<φ2).

The (1) directly yields

A=C22φ1φ2e2kφ𝑑φ=C22/φ=φ1φ2e2kφ2k=C24k(e2kφ2-e2kφ1)=r22-r124k.

References

  • 1 Ernst Lindelöf: Johdatus korkeampaan analyysiin. Fourth edition. Werner Söderström Osakeyhtiö, Porvoo ja Helsinki (1956).
  • 2 N. Piskunov: Diferentsiaal- ja integraalarvutus kõrgematele tehnilistele õppeasutustele.  Kirjastus Valgus, Tallinn (1966).

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 12:15:33