请输入您要查询的字词:

 

单词 TheMultiplicativeIdentityOfACyclicRingMustBeAGenerator
释义

the multiplicative identity of a cyclic ring must be a generator


Theorem.

Let R be a cyclic ring with multiplicative identityPlanetmathPlanetmath u. Then u generates (http://planetmath.org/GeneratorPlanetmathPlanetmathPlanetmath) the additive groupMathworldPlanetmath of R.

Proof.

Let k be the behavior of R. Then there exists a generator (http://planetmath.org/Generator) r of the additive group of R such that r2=kr. Let a with u=ar. Then r=ur=(ar)r=ar2=a(kr)=(ak)r. If R is infinite, then ak=1, causing a=k=1 since k is a nonnegative integer. If R is finite, then ak1mod|R|. Thus, gcd(k,|R|)=1. Since k divides |R|, k=1. Therefore, a1mod|R|. In either case, u=r.∎

Note that it was also proven that, if a cyclic ring has a multiplicative identity, then it has behavior one. Its converse is also true. See this theorem (http://planetmath.org/CyclicRingsOfBehaviorOne) for more details.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 5:56:53