请输入您要查询的字词:

 

单词 TheoremForTheDirectSumOfFiniteDimensionalVectorSpaces
释义

theorem for the direct sum of finite dimensional vector spaces


TheoremLet S and T be subspacesPlanetmathPlanetmath of a finite dimensional vector spaceMathworldPlanetmathV. Then V is the direct sumPlanetmathPlanetmathPlanetmath of S and T, i.e., V=ST,if and only if dimV=dimS+dimT and ST={0}.

Proof. Suppose that V=ST. Then, by definition,V=S+T and ST={0}.The dimension theorem for subspaces states that

dim(S+T)+dimST=dimS+dimT.

Since the dimensionPlanetmathPlanetmath of the zero vector space {0}is zero, we have that

dimV=dimS+dimT,

and the first direction of the claim follows.

For the other direction, suppose dimV=dimS+dimTand ST={0}. Then thedimension theorem theorem for subspaces implies that

dim(S+T)=dimV.

Now S+T is a subspace of V with the same dimensionas V so,by Theorem 1 on this page (http://planetmath.org/VectorSubspace),V=S+T. This proves the second direction.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 19:52:41