请输入您要查询的字词:

 

单词 AxiomOfPowerSet
释义

axiom of power set


The axiom of power setMathworldPlanetmath is an axiom of Zermelo-Fraenkel set theoryMathworldPlanetmath which postulatesMathworldPlanetmath that for any set X there exists a set 𝒫(X), called the power setMathworldPlanetmath of X, consisting of all subsets of X. In symbols, it reads:

X𝒫(X)u(u𝒫(X)uX).

In the above, uX is defined as z(zuzX). By the extensionality axiom, the set 𝒫(X) is unique.

The Power Set Axiom allows us to define the Cartesian productMathworldPlanetmath of two sets X and Y:

X×Y={(x,y):xXyY}.

The Cartesian product is a set since

X×Y𝒫(𝒫(XY)).

We may define the Cartesian product of any finite collectionMathworldPlanetmath of sets recursively:

X1××Xn=(X1××Xn-1)×Xn.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 23:40:26