请输入您要查询的字词:

 

单词 TopicEntryOnComplexAnalysis
释义

topic entry on complex analysis


Introduction

Complex analysis may be defined as the study of analyticfunctionsMathworldPlanetmath of a complex variable. The origins of this subjectlie in the observation that, given a functionMathworldPlanetmath which has aconvergentMathworldPlanetmathPlanetmath Taylor seriesMathworldPlanetmath, one can substitute complex numbersMathworldPlanetmathPlanetmathfor the variable and obtain a convergent seriesMathworldPlanetmath which definesa function of a complex variable. Puttingimaginary numbersMathworldPlanetmath into the power seriesMathworldPlanetmath for the exponentialfunctionDlmfDlmfMathworldPlanetmathPlanetmath, we find

eix=1+ix-x22-ix33!+x44!+ix55!-x66!-ix77!+
e-ix=1-ix-x22+ix33!+x44!-ix55!-x66!+ix77!+

Adding and subtracting these series, we find

12(eix+e-ix)=1-x22!+x44!-x66!+-
12i(eix-e-ix)=x-x33!+x55!-x77!+-

We recognize these series as the Taylor-Madhava series forthe sine and the cosine functions respectively. We hence have

sinx=12i(eix-e-ix)
cosx=12(eix+e-ix)
eix=cosx+isinx.

These equations let us re-express trigonometric functionsDlmfMathworldPlanetmathin terms of complex exponentialsMathworldPlanetmath. Using them, deriving andverifying trigonometric identities becomes a straightforwardexercise in algebra using the laws of exponents.

We call functions of a complex variable which can beexpressed in terms of a power series as complexanalytic. More precisely, if D is an opensubset of , we say that a function f:D is complex analyticif, for every point w in D, there exists a positivenumber δ and a sequenceMathworldPlanetmathPlanetmath of complex numbersck such that the series

k=0ck(z-w)k

converges to f(z) when  zD  and |z-w|<δ.

An important feature of this definition is that itis not required that a single series works forall points of D. For instance, supposewe define the function  f:{1}  as

f(z)=11-z.

While it it turns out that f is analytic, no singleseries will give us the values of f for all allowedvalues of z. For instance, we have the familiargeometric seriesMathworldPlanetmath:

f(z)=k=0zk

However, this series diverges when  |z|>1.  Forsuch values of z, we need to use other series.For instance, when z is near 2, we have thefollowing series:

f(z)=k=0(-1)k+1(z-2)k

This series, however, diverges when  |z-2|>1. While, for every allowed value of z we can findsome power series which will converge to f(z), nosingle power series will converge to f(z) forall permissible values of z.

It is possible to define the operations ofdifferentiationMathworldPlanetmath and integration for complexfunctions. These operations are well-definedfor analytic functions and have the usualproperties familiar from real analysis.

The class of analytic functions is interestingto study for at least two main reasons. Firstly,many functions which arise in pure and appliedmathematics, such as polynomialsPlanetmathPlanetmath, rational functions,exponential functions. logarithmsMathworldPlanetmath, trigonometricfunctions, and solutions of differential equationsare analytic. Second, the class of analytic functionsenjoys many remarkable properties which do not holdfor other classes of functions, such as the following:

ClosurePlanetmathPlanetmath

The class of complex analytic functionsis closed under the usual algebraic operations,taking derivative and integralsDlmfPlanetmath, compositionMathworldPlanetmath,and taking uniform limits.

Rigidity

Given a complex analytic function f:D, where D isan open subset of ,  if we know thevalues of f at an infinite number of points ofD which have a limit pointMathworldPlanetmath in D, then weknow the value of f at all points of D. Forinstance, given a complex analytic function onsome neighborhoodMathworldPlanetmathPlanetmath of the real axis, the valuesof that function in the whole neighborhood willbe determined by its values on the real axis.

Cauchy and Morera theorems

The integral of acomplex analytic function along any contractibleclosed loop equals zero. Conversely, if the integralof a complex function about every contractible loophappens to be zero, then that function is analytic.

Complex differentiability

If a complexfunction is differentiableMathworldPlanetmathPlanetmath, then it has derivativesof all orders. This contrasts sharply with thecase of real analysis, where a function may bedifferentiable only a fixed number of times.

Harmonicity

The real and imaginary partsDlmfMathworldof a complex analytic function are harmonic, i.e.satisfy Laplace’s equation. Conversely, given aharmonic functionPlanetmathPlanetmath on the plane, there exists acomplex analytic function of which it is the realpart.

Conformal mappingMathworldPlanetmathPlanetmath

A complex function isanalytic if and only if it preserves maps pairsof intersecting curves into pairs which intersectat the same angle.

As one can see, there are many ways to characterizecomplex analytic functions, many of which havenothing to do with power series. This suggests thatanalytic functions are somehow a naturally occurringsubset of complex functions. This variety of distinctways of characterizing analytic functions means thatone has a variety of methods which may be used tostudy them and prove deep and surprising resultsby bringing insights and techniques from geometry,differential equations, and functional analysis tobear on problems of complex analysis. This alsoworks the other way — one can use complex analysisto prove results in other branches of mathmaticswhich have nothing to do with complex numbers. Forinstance, the problem of minimal surfaces can besolved by using complex analysis.

0.1 Complex numbers

  1. 1.

    complex plane, equality of complex numbers

  2. 2.

    topologyMathworldPlanetmath of the complex plane

  3. 3.

    triangle inequality of complex numbers

  4. 4.

    argument of product and quotient

  5. 5.

    unit discPlanetmathPlanetmath, annulus, closed complex plane

  6. 6.

    nth root (http://planetmath.org/CalculatingTheNthRootsOfAComplexNumber)

  7. 7.

    taking square rootMathworldPlanetmath algebraically

  8. 8.

    quadratic equation in

  9. 9.

    complex function (http://planetmath.org/ComplexFunction)

0.2 Complex functions

  1. 1.

    de Moivre identityMathworldPlanetmath

  2. 2.

    addition formulaPlanetmathPlanetmath

  3. 3.

    complex exponential function

  4. 4.

    periodicity of exponential function

  5. 5.

    complex sine and cosine

  6. 6.

    values of complex cosine

  7. 7.

    complex tangent and cotangent

  8. 8.

    example of summation by partsPlanetmathPlanetmath

  9. 9.

    Euler’s formulas (see also this (http://planetmath.org/ComplexSineAndCosine))

  10. 10.

    complex logarithm

  11. 11.

    general power

  12. 12.

    fundamental theorems in complex analysis

  13. 13.

    index of special functions

0.3 Analytic function

  1. 1.

    holomorphic

  2. 2.

    meromorphic

  3. 3.

    periodic functionsMathworldPlanetmath

  4. 4.

    isolated singularityMathworldPlanetmath

  5. 5.

    complex derivativeMathworldPlanetmath

  6. 6.

    Cauchy-Riemann equationsMathworldPlanetmath

  7. 7.

    power series (http://planetmath.org/PowerSeries)

  8. 8.

    Bohr’s theorem

  9. 9.

    identity theorem of holomorphic functions

  10. 10.

    Weierstrass double series theoremMathworldPlanetmath

  11. 11.

    entire functionsMathworldPlanetmath

  12. 12.

    properties of entire functions

  13. 13.

    pole of function (http://planetmath.org/Z_0IsAPoleOfF)

  14. 14.

    zeros and poles of rational function

  15. 15.

    when all singularities are poles

  16. 16.

    Casorati-Weierstrass theorem

  17. 17.

    Picard’s theorem

  18. 18.

    Laurent seriesMathworldPlanetmath

  19. 19.

    coefficients of Laurent series

  20. 20.

    residueDlmfMathworldPlanetmath

  21. 21.

    regular at infinity

  22. 22.

    Nevanlinna theoryMathworldPlanetmath

0.4 Complex integration

  1. 1.

    contour integral

  2. 2.

    estimating theorem of contour integral

  3. 3.

    theorems on complex function series

  4. 4.

    holomorphic function associated with continuous function

  5. 5.

    Cauchy integral theorem

  6. 6.

    Cauchy integral formulaPlanetmathPlanetmath; variant of Cauchy integral formula

  7. 7.

    residue theoremMathworldPlanetmath (http://planetmath.org/CauchyResidueTheorem)

  8. 8.

    example of using residue theorem

  9. 9.

    argument principle

  10. 10.

    complex antiderivative

0.5 Analytic continuation

  1. 1.

    analytic continuation

  2. 2.

    meromorphic continuation

  3. 3.

    analytic continuation by power series

  4. 4.

    monodromy theoremMathworldPlanetmath

  5. 5.

    Schwarz’ reflection principle

  6. 6.

    example of analytic continuation

  7. 7.

    analytic continuation of gamma function

  8. 8.

    analytic continuation of Riemann zeta to critical stripMathworldPlanetmath

  9. 9.

    analytic continuation of Riemann zeta (using integral) (http://planetmath.org/AnalyticContinuationOfRiemannZetaUsingIntegral)

0.6 Riemann zeta function

  1. 1.

    Riemann zeta functionDlmfDlmfMathworldPlanetmath

  2. 2.

    Euler product formula

  3. 3.

    Riemann functional equation (http://planetmath.org/FunctionalEquationOfTheRiemannZetaFunction)

  4. 4.

    critical strip

  5. 5.

    http://planetmath.org/node/8190value of the Riemann zeta function at 0, http://planetmath.org/node/4719at 2,  http://planetmath.org/node/11009at 4

  6. 6.

    formulae for zeta in the critical strip

0.7 Conformal mapping

  1. 1.

    conformal mapping

  2. 2.

    conformal mapping theorem

  3. 3.

    simple example of composed conformal mapping

  4. 4.

    example of conformal mapping

  5. 5.

    http://planetmath.org/node/6289Schwarz–Christoffel transformation

Titletopic entry on complex analysis
Canonical nameTopicEntryOnComplexAnalysis
Date of creation2013-05-20 18:11:35
Last modified on2013-05-20 18:11:35
Ownerpahio (2872)
Last modified byunlord (1)
Numerical id60
Authorpahio (1)
Entry typeTopic
Classificationmsc 30A99
Related topicHarmonicConjugateFunction
Related topicTakingSquareRootAlgebraically
Related topicCalculatingTheNthRootsOfAComplexNumber
Related topicFundamentalTheoremOfAlgebra
Related topicFundamentalTheoremsInComplexAnalysis
Definescomplex analytic
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 10:16:07