请输入您要查询的字词:

 

单词 TopicEntryOnTheAlgebraicFoundationsOfMathematics
释义

topic entry on the algebraic foundations of mathematics


This is a contributed topic on the algebraic foundations of mathematics. This topic of algebraicPlanetmathPlanetmath foundations in mathematics will cover a wide range of concepts and areas of mathematics, ranging from universal algebrasMathworldPlanetmath, algebraic topology to algebraic geometryMathworldPlanetmathPlanetmath, number theory and logic algebras.

a. UniversalPlanetmathPlanetmathPlanetmath (or general) algebraMathworldPlanetmathPlanetmath : is defined as the (meta) mathematical study of general theories of algebraic structures rather than the study of specific cases, or models of algebraic structures.

b. Various, specifically selected algebraic structures, such as :

  1. 1.

    Boolean algebraMathworldPlanetmath

  2. 2.

    Logic lattice algebras or many-valued (MV) logic algebras

  3. 3.

    Quantum logicPlanetmathPlanetmath algebras

  4. 4.

    Quantum operator algebrasPlanetmathPlanetmathPlanetmath ( such as : involutionPlanetmathPlanetmath, *-algebras, or *-algebras, von Neumann algebrasMathworldPlanetmathPlanetmathPlanetmath,JB- and JL- algebras, Poisson and C* - or C*- algebras,

  5. 5.

    Algebra over a set

  6. 6.

    Sigma-algebra and T-algebrasPlanetmathPlanetmath of monads

  7. 7.

    K-algebras

  8. 8.

    Group algebrasMathworldPlanetmathPlanetmath

  9. 9.

    Graphs generated by free groupsMathworldPlanetmath

  10. 10.

    Groupoid algebras and GroupoidPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath C*-convolution algebras

  11. 11.

    Hypergraphs generated by free groupoids

  12. 12.

    Double algebras

  13. 13.

    Index of algebras

  14. 14.

    Categorical algebra

  15. 15.

    F-algebra/coalgebra in category theoryMathworldPlanetmathPlanetmathPlanetmath

  16. 16.

    Category of categories as a foundation for mathematics: Functor CategoriesPlanetmathPlanetmath (http://planetmath.org/FunctorCategories) and 2-category (http://planetmath.org/2Category)

  17. 17.

    Index of category theory (http://planetmath.org/IndexOfCategoryTheory)

  18. 18.

    super-categoriesPlanetmathPlanetmath and topological ‘supercategories’

  19. 19.

    Higher dimensional algebrasPlanetmathPlanetmath (HDA) –such as: algebroids, double algebroids, categorical algebroids, double groupoidPlanetmathPlanetmathPlanetmath convolution algebroids, groupoid C* -convolution algebroids, etc., and Supercategorical algebras (SA) as concrete interpretationsMathworldPlanetmathPlanetmath of the theory of elementary abstract supercategories (ETAS)

  20. 20.

    Index of supercategories

  21. 21.

    Index of categories (http://planetmath.org/IndexOfCategories)

  22. 22.

    Index of HDA

Remark The last items of HDA and SA are more precisely understood in the context of, or as generalizationsPlanetmathPlanetmath/ extensionsPlanetmathPlanetmathPlanetmath of, universal algebras.

References

  • 1 Alfsen, E.M. and F. W. Schultz: Geometry of State SpacesMathworldPlanetmath of Operator Algebras, Birkhäuser, Boston–Basel–Berlin (2003).
  • 2 Atyiah, M.F. 1956. On the Krull-Schmidt theorem with applications to sheaves.Bull. Soc. Math. France, 84: 307–317.
  • 3 Auslander, M. 1965. Coherent Functors. Proc. Conf. Cat. Algebra, La Jolla,189–231.
  • 4 Awodey, S. & Butz, C., 2000, Topological Completeness for Higher Order Logic., Journal of Symbolic Logic, 65, 3, 1168–1182.
  • 5 Awodey, S. & Reck, E. R., 2002, Completeness and Categoricity I.Nineteen-Century Axiomatics to Twentieth-Century MetalogicMathworldPlanetmath., History and Philosophy of Logic, 23, 1, 1–30.
  • 6 Awodey, S. & Reck, E. R., 2002, “Completeness and Categoricity II. Twentieth-Century Metalogic to Twenty-first-Century Semantics”, History and Philosophy of Logic, 23, 2, 77–94.
  • 7 “Structure in Mathematics and Logic: A Categorical Perspective”, Philosophia Mathematica, 3, 209–237.
  • 8 Awodey, S., 2004, “An Answer to Hellman’s Question: Does Category Theory Provide a Framework for Mathematical Structuralism”, Philosophia Mathematica, 12, 54–64.
  • 9 Awodey, S., 2006, Category Theory, Oxford: Clarendon Press.
  • 10 Baez, J. & Dolan, J., 1998a, “Higher-Dimensional Algebra III. n-Categories and the Algebra of Opetopes”, Advances in Mathematics, 135, 145–206.
  • 11 Baez, J. & Dolan, J., 2001, “From Finite SetsMathworldPlanetmath to Feynman Diagrams”, Mathematics Unlimited – 2001 and Beyond, Berlin: Springer, 29–50.
  • 12 Baez, J., 1997, “An Introduction to n-Categories”, Category Theory and Computer Science, Lecture Notes in Computer Science, 1290, Berlin: Springer-Verlag, 1–33.
  • 13 Baianu, I.C.: 1970, Organismic SupercategoriesPlanetmathPlanetmath: II. On Multistable Systems. Bulletin of Mathematical Biophysics, 32: 539-561.
  • 14 Baianu, I.C.: 1971b, CategoriesMathworldPlanetmath, FunctorsMathworldPlanetmath and Quantum AlgebraicComputations, in P. Suppes (ed.), Proceed. Fourth Intl. Congress Logic-Mathematics-Philosophy of Science, September 1–4, 1971, Bucharest.
  • 15 Baianu, I.C. and D. Scripcariu: 1973, On Adjoint Dynamical Systems. Bulletin of Mathematical Biophysics, 35(4), 475–486.
  • 16 Baianu, I.C.: 1973, Some Algebraic Properties of (M,R) – Systems. Bulletin of Mathematical Biophysics 35, 213-217.
  • 17 Baianu, I.C. and M. Marinescu: 1974, On A Functorial Construction of (M,R)– Systems. Revue Roumaine de Mathematiques Pures et Appliquees 19: 388-391.
  • 18 Baianu, I.C.: 1977, A Logical Model of Genetic Activities in Łukasiewicz Algebras: The Non-linear Theory. Bulletin of Mathematical Biology,39: 249-258.
  • 19 Baianu, I.C.: 1980a, Natural Transformations of Organismic Structures.,Bulletin of Mathematical Biology,42: 431-446.
  • 20 Baianu, I. C., Glazebrook, J. F. and G. Georgescu: 2004, Categories of Quantum Automata and N-Valued Łukasiewicz Algebras in RelationMathworldPlanetmathPlanetmathPlanetmath to Dynamic Bionetworks, (M,R)–Systems and Their Higher Dimensional Algebra, Abstract and Preprint of Report: http://www.ag.uiuc.edu/fs401/QAuto.pdf and http://www.medicalupapers.com/quantum+automata+math+categories+baianu/
  • 21 Baianu I. C., Brown R., Georgescu G. and J. F. Glazebrook: 2006, Complex Nonlinear Biodynamics in Categories, Higher Dimensional Algebra and Łukasiewicz-Moisil Topos: TransformationsPlanetmathPlanetmath of Neuronal, Genetic and Neoplastic Networks., Axiomathes, 16 Nos. 1-2: 65-122.
  • 22 Baianu, I.C., R. Brown and J.F. Glazebrook. : 2007a, Categorical Ontology of Complex Spacetime Structures: The Emergence of Life and Human Consciousness, Axiomathes, 17: 35-168.
  • 23 Baianu, I.C., R. Brown and J. F. Glazebrook: 2007b, A Non-AbelianMathworldPlanetmathPlanetmath, Categorical Ontology of Spacetimes and Quantum Gravity, Axiomathes, 17: 169-225.
  • 24 Barr, M. and Wells, C., 1985, Toposes, Triples and Theories, New York: Springer-Verlag.
  • 25 Barr, M. and Wells, C., 1999, Category Theory for Computing Science, Montreal: CRM.
  • 26 Bell, J. L., 1981, “Category Theory and the Foundations of Mathematics”, British Journal for the Philosophy of Science, 32, 349–358.
  • 27 Bell, J. L., 1982, “Categories, Toposes and Sets”, Synthese, 51, 3, 293–337.
  • 28 Bell, J. L., 1986, “From Absolute to Local Mathematics”, Synthese, 69, 3, 409–426.
  • 29 Bell, J. L., 1988, Toposes and Local Set TheoriesMathworldPlanetmath: An Introduction, Oxford: Oxford University Press.
  • 30 Birkoff, G. & Mac Lane, S., 1999, Algebra, 3rd ed., Providence: AMS.
  • 31 Blass, A. and Scedrov, A., 1983, Classifying Topoi and Finite ForcingMathworldPlanetmath , Journal of Pure and Applied Algebra, 28, 111–140.
  • 32 Blass, A. and Scedrov, A., 1992, ”CompletePlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath Topoi Representing Models of Set Theory”, Annals of Pure and Applied Logic , 57, no. 1, 1–26.
  • 33 Borceux, F.: 1994, Handbook of Categorical Algebra, vols: 1–3,in Encyclopedia of Mathematics and its Applications 50 to 52, Cambridge University Press.
  • 34 Bourbaki, N. 1961 and 1964: Algèbre commutativePlanetmathPlanetmathPlanetmath.,in Èléments de Mathématique., Chs. 1–6., Hermann: Paris.
  • 35 BJk4)Brown, R. and G. Janelidze: 2004, Galois theory and a new homotopydouble groupoidPlanetmathPlanetmath of a map of spaces, Applied CategoricalStructures 12: 63-80.
  • 36 Brown, R., Higgins, P. J. and R. Sivera,: 2007a, Non-AbelianAlgebraic Topology, in preparation.
    http://www.bangor.ac.uk/ mas010/nonab-a-t.html ;
    http://www.bangor.ac.uk/ mas010/nonab-t/partI010604.pdf
  • 37 Brown, R., Glazebrook, J. F. and I.C. Baianu.: 2007b, A Conceptual, Categorical and Higher Dimensional Algebra Framework of Universal Ontology and the Theory of Levels for Highly Complex Structures and Dynamics., Axiomathes (17): 321–379.
  • 38 Brown R. and T. Porter: 2003, Category theory and higherdimensional algebra: potential descriptive tools in neuroscience, In:Proceedings of the International Conference on TheoreticalNeurobiology, Delhi, February 2003, edited by Nandini Singh,National Brain Research Centre, Conference Proceedings 1, 80-92.
  • 39 Brown, R., Hardie, K., Kamps, H. and T. Porter: 2002, The homotopydouble groupoid of a Hausdorff space., Theory andApplications of Categories 10, 71-93.
  • 40 Brown, R., and Hardy, J.P.L.:1976, Topological groupoidsPlanetmathPlanetmathPlanetmathPlanetmath I:universal constructions, Math. Nachr., 71: 273-286.
  • 41 Brown, R. and Spencer, C.B.: 1976, Double groupoids and crossedmodules, Cah. Top. Géom. Diff. 17, 343-362.
  • 42 Brown R, Razak Salleh A (1999) Free crossed resolutions of groups and presentationsMathworldPlanetmathPlanetmath of modules ofidentitiesPlanetmathPlanetmathPlanetmathPlanetmath among relations. LMS J. Comput. Math., 2: 25–61.
  • 43 Buchsbaum, D. A.: 1955, Exact categories and duality., Trans. Amer. Math. Soc. 80: 1-34.
  • 44 Buchsbaum, D. A.: 1969, A note on homologyMathworldPlanetmathPlanetmath in categories., Ann. of Math. 69: 66-74.
  • 45 Bucur, I., and Deleanu A. (1968). Introduction to the Theory of Categories and Functors. J.Wiley and Sons: London
  • 46 Bunge, M. and S. Lack: 2003, Van Kampen theorems for toposes, Adv. in Math. 179, 291-317.
  • 47 Bunge, M., 1984, ”Toposes in Logic and Logic in Toposes”, Topoi, 3, no. 1, 13-22.
  • 48 Bunge M, Lack S (2003) Van Kampen theorems for toposes. Adv Math, 179: 291-317.
  • 49 Cartan, H. and Eilenberg, S. 1956. Homological Algebra, Princeton Univ. Press: Pinceton.
  • 50 Cohen, P.M. 1965. Universal Algebra, Harper and Row: New York, London and Tokyo.
  • 51 Connes A 1994. Noncommutative geometryPlanetmathPlanetmath. Academic Press: New York.
  • 52 Croisot, R. and Lesieur, L. 1963. Algèbre noethérienne non-commutative.,Gauthier-Villard: Paris.

…more to come

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 22:21:54