topics in algebraic topology
1 Algebraic topology topics
1.1 Introduction
Algebraic topology (AT) utilizes algebraic approaches to solve topological problems,such as the classification of surfaces, proving duality theorems for manifolds
andapproximation theorems for topological spaces. A central problem in algebraic topologyis to find algebraic invariants of topological spaces
, which is usually carried out by meansof homotopy
, homology
and cohomology groups
. There are close connections between algebraic topology,Algebraic Geometry
(AG) (http://planetmath.org/AlgebraicGeometry), and Non-commutative Geometry
/NAAT. On the other hand, there are also close ties between algebraic geometry and numbertheory.
1.2 Outline
- 1.
Homotopy theory and fundamental groups
- 2.
Topology and groupoids; van Kampen theorem
(http://planetmath.org/VanKampensTheorem)
- 3.
Homology and cohomology
theories
- 4.
Duality
- 5.
Category theory
applications in algebraic topology
- 6.
Index of categories, functors
and natural transformations
- 7.
http://www.uclouvain.be/17501.htmlGrothendieck’s Descent theory
- 8.
‘Anabelian geometry’
- 9.
Categorical Galois theory
- 10.
Higher dimensional algebra
(HDA)
- 11.
Quantum algebraic topology (QAT)
- 12.
Quantum Geometry
- 13.
Non-Abelian
algebraic topology (NAAT)
1.3 Homotopy theory and fundamental groups
- 1.
Homotopy
- 2.
Fundamental group of a space
- 3.
Fundamental theorems
- 4.
van Kampen theorem
- 5.
Whitehead groups, torsion
and towers
- 6.
Postnikov towers
1.4 Topology and Groupoids
- 1.
Topology definition, axioms and basic concepts
- 2.
Fundamental groupoid
- 3.
Topological groupoid
- 4.
van Kampen theorem for groupoids
- 5.
Groupoid pushout theorem
- 6.
Double groupoids
and crossed modules
- 7.
new4
1.5 Homology theory
- 1.
Homology group
- 2.
Homology sequence
- 3.
Homology complex
- 4.
new4
1.6 Cohomology theory
- 1.
Cohomology group
- 2.
Cohomology sequence
- 3.
DeRham cohomology
- 4.
new4
1.7 Duality in algebraic topology and category theory
- 1.
Tanaka-Krein duality
- 2.
Grothendieck duality
- 3.
Categorical duality
- 4.
Tangled duality
- 5.
DA5
- 6.
DA6
- 7.
DA7
1.8 Category theory applications
- 1.
Abelian categories
- 2.
Topological category
- 3.
Fundamental groupoid functor
- 4.
Categorical Galois theory
- 5.
Non-Abelian algebraic topology
- 6.
Group category
- 7.
Groupoid category
- 8.
category
- 9.
Topos and topoi axioms
- 10.
Generalized toposes
- 11.
Categorical logic and algebraic topology
- 12.
Meta-theorems
- 13.
Duality between spaces and algebras
1.9 Index of categories
The following is a listing of categories relevant to algebraic topology:
- 1.
http://www.uclouvain.be/17501.htmlAlgebraic categories
- 2.
Topological category
- 3.
Category of sets, Set
- 4.
Category of topological spaces
- 5.
Category of Riemannian manifolds
- 6.
Category of CW-complexes
- 7.
Category of Hausdorff spaces
- 8.
Category of Borel spaces
- 9.
Category of CR-complexes
- 10.
Category of graphs
- 11.
Category of spin networks
- 12.
Category of groups
- 13.
Galois category
- 14.
Category of fundamental groups
- 15.
Category of Polish groups
- 16.
Groupoid category
- 17.
Category of groupoids
(or groupoid category)
- 18.
Category of Borel groupoids
- 19.
Category of fundamental groupoids
- 20.
Category of functors
(or functor category)
- 21.
Double groupoid category
- 22.
Double category
- 23.
Category of Hilbert spaces
- 24.
Category of quantum automata
- 25.
R-category
- 26.
Category of algebroids
- 27.
Category of double algebroids
- 28.
Category of dynamical systems
1.10 Index of functors
The following is a contributed listing of functors:
- 1.
Covariant functors
- 2.
Contravariant functors
- 3.
Adjoint functors
- 4.
Preadditive functors
- 5.
Additive functor
- 6.
Representable functors
- 7.
Fundamental groupoid functor
- 8.
Forgetful functors
- 9.
Grothendieck group functor
- 10.
Exact functor
- 11.
Multi-functor
- 12.
Section functors
- 13.
NT2
- 14.
NT3
1.11 Index of natural transformations
The following is a contributed listing of natural transformations:
- 1.
Natural equivalence
- 2.
Natural transformations in a 2-category
- 3.
NT3
- 4.
NT1
- 5.
NT2
- 6.
NT3
1.12 Grothendieck proposals
- 1.
Esquisse d’un Programme (http://planetmath.org/AlexSMathematicalHeritageEsquisseDunProgramme)
- 2.
http://www.math.jussieu.fr/ leila/grothendieckcircle/stacks.psPursuing Stacks
- 3.
S2
- 4.
S3
- 5.
S4
1.13 Descent theory
- 1.
D1
- 2.
D2
- 3.
D3
- 4.
D4
1.14 Higher dimensional algebra (HDA)
- 1.
Categorical groups
- 2.
Double groupoids
- 3.
Double algebroids
- 4.
Bi-algebroids
- 5.
-algebroid
- 6.
-category
- 7.
-category
- 8.
Super-category
- 9.
weak n-categories
- 10.
Bi-dimensional Geometry
- 11.
Noncommutative geometry (http://planetmath.org/NoncommutativeGeometry)
- 12.
Higher-Homotopy theories
- 13.
Higher-Homotopy Generalized van Kampen Theorem (HGvKT) (http://planetmath.org/GeneralizedVanKampenTheoremsHigherDimensional)
- 14.
H1
- 15.
H2
- 16.
H3
- 17.
H4
1.14.1 Axioms of cohomology theory
- 1.
A1
- 2.
A2
- 3.
A3
- 4.
A4
- 5.
A5
- 6.
A6
- 7.
A7
1.14.2 Axioms of homology theory
- 1.
A1
- 2.
A2
- 3.
A3
- 4.
A4
- 5.
A5
- 6.
A6
1.15 Quantum algebraic topology (QAT)
(a). Quantum algebraic topology is described as the mathematical and physical study of general theories of quantum algebraic structures from the standpoint of algebraic topology, category theory andtheir non-Abelian extensions
in higher dimensional algebra and supercategories
- 1.
Quantum operator algebras
(such as: involution, *-algebras, or -algebras, von Neumann algebras
,, JB- and JL- algebras, - or C*- algebras,
- 2.
Quantum von Neumann algebra and subfactors; Jone’s towers and subfactors
- 3.
Kac-Moody and K-algebras
- 4.
categorical groups
- 5.
Hopf algebras
, quantum Groups
and quantum group algebras
- 6.
Quantum groupoids
and weak Hopf -algebras
- 7.
Groupoid C*-convolution algebras and *-convolution algebroids
- 8.
Quantum spacetimes and quantum fundamental groupoids
- 9.
Quantum double Algebras
- 10.
Quantum gravity, supersymmetries, supergravity, superalgebras and graded ‘Lie’ algebras
- 11.
Quantum categorical algebra and higher–dimensional, - Toposes
- 12.
Quantum R-categories, R-supercategories and spontaneous symmetry breaking
- 13.
Non-Abelian Quantum algebraic topology (NA-QAT): closely related to NAAT and HDA.
1.16 Quantum Geometry
- 1.
Quantum Geometry overview (http://planetmath.org/QuantumGeometry2)
- 2.
Quantum non-commutative geometry
1.17 Non-Abelian Algebraic Topology (NAAT)
- 1.
Non-Abelian categories
- 2.
Non-commutative groupoids (including non-Abelian groups
)
- 3.
Generalized van Kampen theorems (http://planetmath.org/GeneralizedVanKampenTheoremsHigherDimensional)
- 4.
Noncommutative Geometry (NCG) (http://planetmath.org/NoncommutativeGeometry)
- 5.
Non-commutative ‘spaces’ of functions
- 6.
http://planetphysics.org/encyclopedia/NonAbelianAlgebraicTopology5.htmlnon-Abelian Algebraic Topology
1.18 12
- 1.
new1
- 2.
new2
- 3.
new3
- 4.
new4
1.19 13
- 1.
new1
- 2.
new2
- 3.
new3
- 4.
new4
1.20 14
1.21 References
http://planetmath.org/?op=getobj&from=objects&id=10746Bibliography on Category theory, AT and QAT
1.21.1 Textbooks and Expositions:
- 1.
A http://planetmath.org/?op=getobj&from=books&id=172Textbook1
- 2.
A http://planetmath.org/?op=getobj&from=books&id=156Textbook2
- 3.
A http://planetmath.org/?op=getobj&from=books&id=159Textbook3
- 4.
A http://planetmath.org/?op=getobj&from=books&id=160Textbook4
- 5.
A http://planetmath.org/?op=getobj&from=books&id=153Textbook5
- 6.
A http://planetmath.org/?op=getobj&from=lec&id=68Textbook6
- 7.
A http://planetmath.org/?op=getobj&from=books&id=158Textbook7
- 8.
A http://planetmath.org/?op=getobj&from=lec&id=75Textbook8
- 9.
A http://planetmath.org/?op=getobj&from=lec&id=73Textbook9
- 10.
A http://planetmath.org/?op=getobj&from=books&id=174Textbook10
- 11.
A http://planetmath.org/?op=getobj&from=books&id=169Textbook11
- 12.
A http://planetmath.org/?op=getobj&from=books&id=178Textbook12
- 13.
A http://www.math.cornell.edu/ hatcher/VBKT/VB.pdfTextbook13
- 14.
new1