请输入您要查询的字词:

 

单词 BohrsTheorem
释义

Bohr’s theorem


(Bohr 1914).  If the power seriesMathworldPlanetmathn=0anzn satisfies

|n=0anzn|< 1(1)

in the unit disk  |z|<1,  then (1) and the inequality

n=0|anzn|< 1(2)

is true in the disk  |z|<13.  Here, the radius 13 is the best possible.

Proof.  One needs Carathéodory’s inequality which says that if the real partDlmfPlanetmath of a holomorphic functionMathworldPlanetmath

g(z):=n=0bnzn

is positive in the unit disk, then

|bn| 2Reb0forn=1, 2,

Choosing now  g(z):=1-eiφf(z)  where φ is any real number and f(z) the sum functionMathworldPlanetmath of the series in the theorem, we get

|an| 2Re(1-eiφa0)= 2(1-a0cosφ),

and especially

|an| 2(1-|a0|),forn=1, 2,

If  f(z)a0,  in the disk  |z|<13  we thus have

n=0|anzn|<|a0|+2(1-|a0|)n=1(13)n= 1.

Take then in particular the function defined by

f(z):=z-c1-cz

with  0<c<1.  Its series expansion

f(z)=n=0anzn=-c+(1-c2)z+(1-c2)cz2+(1-c2)c2z3+

shows that

n=0|anzn|=f(|z|)+2c,

which last form can be seen to become greater than 1 for  |z|>11+2c.  Because c may come from below arbitrarily to 1, one sees that the value 13 in the theorem cannot be increased.

References

  • 1 Harald Bohr: “A theorem concerning power series”. – Proc. London Math. Soc. 13 (1914).
  • 2 Harold P. Boas: “Majorant series”. – J. Korean Math. Soc. 37 (2000).
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 9:48:55