请输入您要查询的字词:

 

单词 TransitionToSkewangledCoordinates
释义

transition to skew-angled coordinates


Let the Euclidean planeMathworldPlanetmath be equipped with the rectangular coordinate system with the x and y coordinateMathworldPlanetmathPlanetmath axes.  We choose new coordinate axes through the old origin and project (http://planetmath.org/ProjectionMathworldPlanetmath) the new coordinates ξ, η of a point orthogonally on the x and y axes getting the old coordinates expressed as

{x=ξcosα+ηcosβ,y=ξsinα+ηsinβ,(1)

where α and β are the angles which the ξ-axis and η-axis, respectively, form with the x-axis (positive if x-axis may be rotated anticlocwise to ξ-axis, else negative; similarly for rotating the x-axis to the η-axis).

The of (1) are got by solving from it for ξ and η, getting

ξ=xsinβ-ycosβsin(β-α),η=-xsinα+ycosαsin(β-α).

Example.  Let us consider the hyperbolaMathworldPlanetmathPlanetmath (http://planetmath.org/Hyperbola2)

x2a2-y2b2=1(2)

and take its asymptoteMathworldPlanetmathy=-bax  for the ξ-axis and the asymptote  y=+bac  for the η-axis.  If ω is the angle formed by the latter asymptote with the x-axis, then  α=-ω,  β=ω.  By (1) we get first

{x=ξcosω+ηcosω=(η+ξ)cosω,y=-ξsinω+ηsinω=(η-ξ)sinω.

Since  tanω=ba,  we see that  cosω=ac,  sinω=bc,  where  c2=a2+c2, and accordingly

xa=(η+ξ)ac:a=η+ξc,yb=(η-ξ)bc:b=η-ξc.

Substituting these quotients in the equation of the hyperbola we obtain

(η+ξ)2-(η-ξ)2=c2,

and after simplifying,

ξη=c24.(3)

This is the equation of the hyperbola (2) in the coordinate systemMathworldPlanetmath of its asymptotes.  Here, c is the distanceMathworldPlanetmath of the focus (http://planetmath.org/Hyperbola2) from the nearer apex (http://planetmath.org/Hyperbola2) of the hyperbola.

If we, conversely, have in the rectangular coordinate system (x,y) an equation of the form (3), e.g.

xy= constant,(4)

we can infer that it a hyperbola with asymptotes the coordinate axes. Since these are perpendicularMathworldPlanetmathPlanetmathPlanetmath to each other, it’s clear that the hyperbola (4) is a rectangular (http://planetmath.org/Hyperbola2) one.

References

  • 1 L. Lindelöf: Analyyttisen geometrian oppikirja.  Kolmas painos.  Suomalaisen Kirjallisuuden Seura, Helsinki (1924).
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/5 0:40:31