请输入您要查询的字词:

 

单词 TransitiveActionsArePrimitiveIfAndOnlyIfStabilizersAreMaximalSubgroups
释义

transitive actions are primitive if and only if stabilizers are maximal subgroups


Theorem 1.

If G is transitiveMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath on the set A, then G is primitive on A if and only if for each aA, Ga is a maximal subgroup of G. Here Ga=StabG(a) is the stabilizerMathworldPlanetmath of aA.

Proof.

First claim that if G is transitive on A and BA is a block (http://planetmath.org/BlockSystem) with aB, then GB={σGσ(B)=B} is a subgroupMathworldPlanetmathPlanetmath of G containing Ga. It is obvious that GB is a subgroup, since

σGBσ(B)=Bσ-1(σ(B))=σ-1(B)B=σ-1(B)σ-1GB
σ,τGB(στ)(B)=σ(τ(B))=σ(B)=BστGB

But also, if σGa for aB, then σ(a)=a, so σ(B)B and thus σ(B)=B since B is a block system and thus σGB. This proves the claim.

To prove the theorem, note that for each aA, there is by the claim a 1-1 correspondence between containing a and subgroups of G containing Ga. Thus, G is primitive on A if and only if all blocks are either of size 1 or equal to A, if and only if any group containing Ga is either Ga itself or G, if and only if for all aA, Ga is maximal in G.∎

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 17:21:36