请输入您要查询的字词:

 

单词 BrunsPureSieve
释义

Brun’s pure sieve


In the first quarter of the twentieth century Viggo Brun developedan extensionPlanetmathPlanetmath of the sieve of EratosthenesMathworldPlanetmathPlanetmath that yielded goodestimates on the number of elements of a set 𝒜 thatare not divisible (http://planetmath.org/Divisibility) by any of the primes p1,,pk providedonly that 𝒜 is “sufficiently regularly distributed”modulo these primes. That allowed him to prove that the sum ofreciprocals of twin primesMathworldPlanetmath converges (the limit is now known asBrun’s constant), and that every sufficiently large even numberMathworldPlanetmath isa sum of two numbers each having at most 9 prime factorsMathworldPlanetmath. Inwhat follows we describe the simplest form of Brun’s sieve, knownas Brun’s pure sieve.

The sieve of Eratosthenes (http://planetmath.org/SieveOfEratosthenes2) isbased on the principle of inclusion-exclusion in the form

n𝒜p1npkn1=n𝒜(n,p1pk)=11=n𝒜d(n,p1pk)μ(d)
=dp1pkμ(d)n𝒜dn1=dp1pkμ(d)Ad
=A1-pp1pkAp+pqp1pkApq+.(1)

Brun’s sieve is based on the observation that the partial sumsof (1) alternatively overcount andundercount the number of elements of 𝒜 counted by theleft side, that is,

dp1pkν(d)2h-1μ(d)Adn𝒜p1npkn1dp1pkν(d)2hμ(d)Ad(2)

where ν(d) denotes the number of prime (http://planetmath.org/Prime) factors of d. Inapplications Ad can usually be approximated by a multiple of amultiplicative function, that is,

Ad=Xw(d)/d+Rd

where w(d) is some multiplicative function of d, and Rd issmall compared to Xw(d)/d. Then the estimatein (2) takes the form

dp1pkν(d)tμ(d)Ad=dp1pkν(d)tμ(d)(Xw(d)/d+Rd)
=Xdp1pkν(d)tμ(d)w(d)d+O(dp1pkν(d)tRd)(3)

If the truncated sum is a good approximation to the full sum, thenthis formulaMathworldPlanetmath is an improvement over thesieve of Eratosthenes (http://planetmath.org/SieveOfEratosthenes2) because the sum over errorterms Rd is shorter.

Since uν(d)-t is greater than 1 for every u>1 and everyd such that ν(d)>t, we have that

dp1pkν(d)tμ(d)w(d)d=dp1pkμ(d)w(d)d+O(dp1pkν(d)>tw(d)d)
=dp1pkμ(d)w(d)d+O(dp1pkw(d)duν(d)-t)
=dp1pkμ(d)w(d)d+O(u-tdp1pkw(d)duν(d))
and since the sum of a multiplicative function can bewritten as an Euler productMathworldPlanetmath, we get
=p𝒫(1-w(p)p)+O(u-tp𝒫(1+uw(p)p))
=p𝒫(1-w(p)p)+O(u-tp𝒫(1+w(p)p)u)
to minimize the error term we chooseu=t/p𝒫log(1+w(p)p), and get
=p𝒫(1-w(p)p)+O(1tp𝒫w(p)p)t

Combining this with (3) and (2) weobtain

n𝒜p1npkn1=Xp𝒫(1-w(p)p)+XO(1tp𝒫w(p)p)t+O(dp1pkν(d)tRd)(4)

provided that u=t/p𝒫log(1+w(p)p)1.

Example. (Upper boundMathworldPlanetmath on the number of primes.) If we set𝒫 to be all the primes less y, and𝒜={1,2,,x}, then the right hand sideof (4) provides an upper bound for the number ofprimes between y and x.

We have that w(d)=1 and Rd1. The second error termin (4) has at most yt summands, and the firsterror term is bounded by (ctloglogy)t by Merten’stheorem. Thus, the estimate (4) becomes

π(x)-π(y)xe-γ+o(1)logy+xO(1tloglogy)t+O(yt)

In order to squeeze out the best upper bound on the number of primesnot exceeding x we have to minimize the right side of theinequalityMathworldPlanetmath above. The nearly optimal choice is t=cloglogx,and y=x1/2cloglogx for a sufficiently large constant c.With this choice we obtain

π(x)O(xloglogxlogx).

This inequality is stronger than the one obtained by anapplication of the sieve of Eratosthenes (http://planetmath.org/SieveOfEratosthenes2).

Example. (Upper bound on the number of twin primes.) Ifp<n and pn(n+2), then the integers n and n+2 cannotboth be primes. Let 𝒫 be as above, and set𝒜={n(n+1):n[y..x]}. Then w(2)=1, andw(p)=2 if p>2. The remainder Rd does not exceed2ν(d). Like above we obtain

π2(x)-π2(y)xc(logy)2+xO(1tloglogy)t+O((2y)t)

where π2(x) denotes the number of twin primes not exceedingx. Upon setting t=cloglogx, and y=x1/2cloglogx weobtain

π2(x)O(x(loglogx)2(logx)2).

This is the original result for which Viggo Brun developed thesieve now bearing his name. This result can be put in followingstriking form:

Theorem.

The sum

p,p+2 primes(1p+1p+2)

converges.

General combinatorial sieve

The inequality (2) was based on the observationthat

dnμ(d)χ-(d)dnμ(d)dnμ(d)χ+(d)(5)

where χ- is the characteristic functionMathworldPlanetmathPlanetmathPlanetmath of the set ofintegers with no more than 2h-1 prime factors, and χ+ isthe characteristic function of the set of integers with no morethan 2h prime factors. It is possible to choose differentfunctions χ- and χ+ that satisfy theinequality (5) to obtain bounds similarto (4). The problem of optimal choice of thesefunctions in general is very hard. For more detailed informationon Brun’s sieve and sieves in general one should consult themonographs[1, 2, 3].

References

  • 1 George Greaves. Sieves in number theoryMathworldPlanetmath. Springer, 2001. http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=1003.11044Zbl 1003.11044.
  • 2 H. Halberstam and H.-E. Richert. Sieve methods, volume 4 of London Mathematical SocietyMonographs. 1974. http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0298.10026Zbl 0298.10026.
  • 3 C. Hooley. Application of sieve methods to the theory of numbers,volume 70 of Cambridge Tracts in Mathematics. Cambridge Univ. Press, 1976. http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0327.10044Zbl 0327.10044.
  • 4 Gérald Tenenbaum. Introduction to AnalyticPlanetmathPlanetmath and Probabilistic Number Theory,volume 46 of Cambridge Studies in Advanced Mathematics. Cambridge Univ. Press. http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0831.11001Zbl 0831.11001.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/5 4:26:26