请输入您要查询的字词:

 

单词 CauchyRiemannEquations
释义

Cauchy-Riemann equations


The following system of partial differentialequationsMathworldPlanetmath

ux=vy,uy=-vx,

where u(x,y),v(x,y) are real-valued functions defined on someopen subset of 2, was introduced by Riemann[1] as adefinition of a holomorphic functionMathworldPlanetmath. Indeed, if f(z) satisfies thestandard definition of a holomorphic function, i.e. if thecomplex derivativeMathworldPlanetmath

f(z)=limζ0f(z+ζ)-f(z)ζ

exists in the domain of definition, then the real and imaginary partsDlmfPlanetmathof f(z)satisfy the Cauchy-Riemann equationsMathworldPlanetmath.Conversely, if u and v satisfy the Cauchy-Riemann equations, and if theirpartial derivativesMathworldPlanetmath are continuousMathworldPlanetmath, then the complex valued functionMathworldPlanetmath

f(z)=u(x,y)+iv(x,y),z=x+iy,

possesses a continuous complex derivative.

References

  1. 1.

    D. Laugwitz, Bernhard Riemann, 1826-1866:Turning points in the Conception ofMathematics, translated by Abe Shenitzer. Birkhauser, 1999.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/5 1:28:16