请输入您要查询的字词:

 

单词 CauchyRiemannEquationscomplexCoordinates
释义

Cauchy-Riemann equations (complex coordinates)


Let f:G be a continuously differentiable function in the real sense, using 2 instead of, identifying f(z) with f(x,y) where z=x+iy and we also write z¯=x-iy (the complex conjugateMathworldPlanetmath). Then we have the following partial derivativesMathworldPlanetmath:

fz:=12(fx-ify),
fz¯:=12(fx+ify).

Sometimes these are written as fz and fz¯ respectively.

The classical Cauchy-Riemann equationsMathworldPlanetmath are equivalentMathworldPlanetmathPlanetmathPlanetmathPlanetmath to

fz¯=0.

This can be seen if we write f=u+iv for real valued u and v andthen the differentialsMathworldPlanetmath become

fz=12(ux+vy)+i2(vx-uy),
fz¯=12(ux-vy)+i2(vx+uy).

In several complex dimensions, for a functionf:Gn which maps(z1,,zn)f(z1,,zn) where zj=xj+iyj we generalize simply by

fzj:=12(fxj-ifyj),
fz¯j:=12(fxj+ifyj).

Then the Cauchy-Riemann equations are given by

fz¯j=0  for all 1jn.

That is, f is holomorphic if and only if it satisfies the above equations.

References

  • 1 Steven G. Krantz.,AMS Chelsea Publishing, Providence, Rhode Island, 1992.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/5 4:57:06