请输入您要查询的字词:

 

单词 CayleysTheoremForSemigroups
释义

Cayley’s theorem for semigroups


Let X be a set.We can define on XX,the set of functions from X to itself,a structureMathworldPlanetmath of semigroup by puttingfg=gf.Such semigroup is actually a monoid,whose identity elementMathworldPlanetmath is the identity function of X.

Theorem 1 (Cayley’s theorem for semigroups)

For every semigroup (S,)there exist a set Xand an injective map ϕ:SXXwhich is a morphismMathworldPlanetmathPlanetmath of semigroups from (S,) to (XX,).

In other words,every semigroup is isomorphicPlanetmathPlanetmathPlanetmath toa semigroup of transformations of some set.This is an extensionPlanetmathPlanetmathPlanetmath of Cayley’s theorem on groups,which states that every group is isomorphic toa group of invertiblePlanetmathPlanetmathPlanetmath transformationsPlanetmathPlanetmath of some set.

Proof of Theorem 1.The argument is similarPlanetmathPlanetmath to the one for Cayley’s theorem on groups.Let X=S, the set of elements of the semigroup.

First, suppose (S,) is a monoid with unit e.For sS define fs:SS as

fs(x)=xsxS.(1)

Then for every s,t,xS we have

fst(x)=x(st)
=(xs)t
=ft(xs)
=ft(fs(x))
=(ftfs)(x)
=(fsft)(x),

so ϕ(s)=fs is a homomorphismMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath of monoids,with fe=idS.This homomorphism is injectivePlanetmathPlanetmath,because if fs=ft,then s=fs(e)=ft(e)=t.

Next, suppose (S,) is a semigroup but not a monoid.Let eS.Construct a monoid (M,) by putting M=S{e} and defining

st={stifs,tS,sifsS,t=e,tifs=e,tS,eifs=t=e.

Then (M,) is isomorphic to a submonoid of (MM,)as by (1).For sS put gs=fs|S:then gsSS for every s,gst=fst|S,and (S,) is isomorphic to (Σ,)with Σ={gssS}.

Observe that the theorem remains validif fg is defined as fg.In this case, the morphism ϕ is defined byfs(x)=sxxS.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 16:48:36