请输入您要查询的字词:

 

单词 CesaroSummability
释义

Cesàro summability


Cesàro summability is a generalized convergence criterion for infiniteseries. We say that a series n=0an isCesàro summable if the Cesàro means of the partial sums convergePlanetmathPlanetmath tosome limit L. To be more precise, letting

sN=n=0Nan

denote the Nth partial sum, we say that n=0anCesàro converges to a limit L, if

1N+1(s0++sN)LasN.

Cesàro summability is a generalizationPlanetmathPlanetmath of the usual definition of thelimit of an infinite series.

Proposition 1

Suppose that

n=0an=L,

in the usual sense thatsNL as N. Then, the series inquestion Cesàro converges to the samelimit.

The converseMathworldPlanetmath, however is false. The standard example of a divergentseriesMathworldPlanetmath, that is nonetheless Cesàro summable is

n=0(-1)n.

The sequence of partial sums1,0,1,0, does not converge. The Cesàro means, namely

11,12,23,24,35,36,

do converge, with 1/2 as the limit. Hence the series inquestion is Cesàro summable.

There is also a relationMathworldPlanetmath between Cesàro summability and Abelsummability11This and similar results are often called Abeliantheorems..

Theorem 2 (Frobenius)

A series that is Cesàro summable is also Abel summable. To be moreprecise, suppose that

1N+1(s0++sN)L𝑎𝑠N.

Then,

f(r)=n=0anrnL𝑎𝑠r1-

as well.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/25 0:40:40