请输入您要查询的字词:

 

单词 UniquenessOfAdditiveInverseInARing
释义

uniqueness of additive inverse in a ring


Lemma.

Let R be a ring, and let a be any element of R. There exists a unique element b of R such that a+b=0, i.e. there is a unique additive inverse (http://planetmath.org/Ring) for a.

Proof.

Let a be an element of R. By definition of ring, there exists at least one additive inverse (http://planetmath.org/Ring) of a, call it b1, so that a+b1=0. Now, suppose b2 is another additive inverse of a, i.e. another element of R such that

a+b2=0

where 0 is the zero element (http://planetmath.org/Ring) of R. Let us show that b1=b2. Using properties for a ring and the above equations for b1 and b2yields

b1=b1+0(definition of zero)
=b1+(a+b2)(b2 is an additive inverse of a)
=(b1+a)+b2(associativity in R)
=0+b2(b1 is an additive inverse of a)
=b2(definition of zero).

Therefore, there is a unique additive inverse for a.∎

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 23:53:01