values of the Legendre symbol
For an integer and an odd prime , let be the Legendre symbol.
Theorem.
Let be an odd prime. The Legendre symbol takes the following values:
- 1.
- 2.
- 3.
- 4.
Proof.
For a proof of (1), see http://planetmath.org/node/1IsQuadraticResidueIfAndOnlyIfPequiv1Mod4this entry. Part (2) is proved in http://planetmath.org/node/QuadraticCharacterOf2this entry. For parts (3), (4) and (5), we use quadratic reciprocity. For example,
and the only quadratic residues modulo are .∎