请输入您要查询的字词:

 

单词 VandermondeIdentity
释义

Vandermonde identity


Theorem 1 ([1] 24.1.1 formula A. II.).

For any p and q and any k with 0kp+q,

(p+qk)=i=0k(pi)(qk-i).(*)
Proof.

Let P and Q be disjoint sets with |P|=p and |Q|=q. Then theleft-hand sideof Equation (*) is equal to the number of subsets of PQ of size k.To build a subset of PQ of size k, we first decide how many elements, say i with 0ik,we will select from P. We can then select those elements in (pi)ways. Once we have done so, we must select theremaining k-i elements from Q, which we can do in (qk-i) ways. Thus there are (pi)(qk-i) ways to select a subset of PQ of size k subject to the restrictionPlanetmathPlanetmathPlanetmathPlanetmath that exactly i elements come from P. Summing over all possible i completesPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath the proof.∎

References

  • 1 Abramowitz, M., and I. A. Stegun, eds. Handbook of Mathematical Functions. National Bureau of Standards, Dover, New York, 1974.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 20:33:51