请输入您要查询的字词:

 

单词 VariantOfCauchyIntegralFormula
释义

variant of Cauchy integral formula


Theorem.  Let f(z) be holomorphic in a domain A of .  If C is a closed contour not intersecting itself which with its domain is contained in A and if z is an arbitrary point inside C, then

f(z)=12iπCf(t)t-z𝑑t.(1)

Proof.  Let ε be any positive number.  Denote by Cr the circles with radius r and centered in z.  We have

Cf(t)t-z𝑑t=Cf(z)+(f(t)-f(z))t-z𝑑t=Cf(z)t-z𝑑tI+Cf(t)-f(z)t-z𝑑tJ.

According to the corollary of Cauchy integral theorem and its example, we may write

I=f(z)Cdtt-z= 2iπf(z).

If  0<r< some r0,  we have

J=Crf(t)-f(z)t-z𝑑t.

The continuity of f in the point z implies, that

|f(t)-f(z)|<ε

when  0<|t-z|< some δε  i.e. when

tCr and  0<r< some r1.(2)

If (2) is in , we obtain first

|f(t)-f(z)t-z|=|f(t)-f(z)||t-z|=|f(t)-f(z)|r<εr,

whence, by the estimation theorem of integral,

|J|εr2πr= 2πεfor0<r<min{r0,r1},

and lastly

|12iπCf(t)t-z𝑑t-f(z)|=|12iπJ|12π2πε=εwhen 0<r<min{r0,r1}.(3)

This result implies (1).

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 19:23:06