请输入您要查询的字词:

 

单词 ClairautsEquation
释义

Clairaut’s equation


The ordinary differential equationMathworldPlanetmath

y=xdydx+ψ(dydx),(1)

where ψ is a given differentiableMathworldPlanetmathPlanetmath real function, is called Clairaut’s equation.

For solving the equation we use an auxiliary variable  p=:dydx  and write (1) as

y=px+ψ(p).

Differentiating this equation gives

p=xdpdx+p+ψ(p)dpdx,

or

[x+ψ(p)]dpdx= 0.

The zero rule of product now yields the alternatives

dpdx= 0(2)

and

x+ψ(p)= 0.(3)

Integrating (2) we get  p=C (), and substituting this in (1) gives the general solution

y=Cx+ψ(C)(4)

which presents a family of straight lines.

If (3) allows to solve p in of x,  p=p(x),  we can write (1) as

y=xp(x)+ψ(p(x)),(5)

which is easy to see satisfying (1).  The solution (5) may not be gotten from (4) using any value of C.  It is a singular solution which may be obtained by eliminating the parameter p from the equations

y=px+ψ(p),x+ψ(p)= 0.

Thus the singular solution presents the envelope of the family (4).

Example.  The Clairaut’s equation

y=xdydx+adydx1+(dydx)2

has the general solution

y=Cx+Ca1+C2

and the singular solution

{x=-a(1+p2)3/2,y=-ap3(1+p2)3/2

in a parametric form.  Eliminating the parametre p yields the form

x23+y23=a23,

which can be recognized to be the equation of an astroid.  The envelope (see “determining envelope (http://planetmath.org/DeterminingEnvelope)”) of the lines is only the left half of this curve (x0).  The usual parametric of the astroid is  x=acos3φ,  y=asin3φ (0φ<2π).

References

  • 1 N. Piskunov: Diferentsiaal- ja integraalarvutus kõrgematele tehnilistele õppeasutustele.  – Kirjastus Valgus, Tallinn (1966).
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/3 14:08:51