请输入您要查询的字词:

 

单词 ViswanathsConstant
释义

Viswanath’s constant


Viswanath’s constant V1.1319882487943 is a real number whose nth power approximates the absolute valueMathworldPlanetmathPlanetmathPlanetmath of the nth term of some random Fibonacci sequencesMathworldPlanetmath, especially as n gets larger. In his 2000 paper, Divakar Viswanath gave the value of the functionMathworldPlanetmath to just eight decimal places as 1.13198824. Viswanath believed the logarithm of the constant to lie between 0.123975598 and 0.1239755995. Oliveira and Figuereido in 2002 computed the value again using interval arithmetic instead of Viswanath’s “detailed rounding-error analysis,” in order to obtain “slightly better results.” Using Mathematica, Eric Weisstein computed a different value: 1.1321506910656020459.

The continued fractionDlmfMathworldPlanetmath of Viswanath’s constant, which is not periodic, begins

1+11+17+11+1,

and aside from some instances of 2s, is thought to contain mostly odd numbersMathworldPlanetmathPlanetmath.

References

  • 1 S. R. Finch, Mathematical Constants. Cambridge: Cambridge University Press (2003): 1.2.4
  • 2 João Batista Oliveira & Luiz Henrique de Figuereido, “Interval Computation of Viswanath’s Constant” Reliable Computing 8 2 (2002): 131 - 138
  • 3 Divakar Viswanath “Random Fibonacci sequences and the number 1.13198824….” Mathematics of Computation 69 231 (2000): 1131 - 1155
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 22:18:10