请输入您要查询的字词:

 

单词 WeakHopfAlgebra
释义

weak Hopf algebra


Definition 0.1:In order to define a weak Hopf algebraPlanetmathPlanetmathPlanetmathPlanetmath, one weakens, or relaxes certain axioms of a Hopf algebraPlanetmathPlanetmathPlanetmath as follows :

  • (1)

    The comultiplication is not necessarily unit–preserving.

  • (2)

    The counit ε is not necessarily a homomorphismMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath of algebrasMathworldPlanetmathPlanetmathPlanetmath.

  • (3)

    The axioms for the antipode map S:AA with respect to thecounit are as follows. For all hH,

    m(idS)Δ(h)=(εid)(Δ(1)(h1))(0.1)
    m(Sid)Δ(h)=(idε)((1h)Δ(1))
    S(h)=S(h(1))h(2)S(h(3)).

These axioms may be appended by the following commutative diagramsMathworldPlanetmath

AASidAAΔmA@ >uεA  AAidSAAΔmA@ >uεA(0.2)

along with the counit axiom:

\\xymatrix@C=3pc@R=3pcAA\\ar[d]ε1&A\\ar[l]Δ\\ar[dl]idA\\ar[d]ΔA&AA\\ar[l]1ε(0.3)

Some authors substitute the term quantum groupoidPlanetmathPlanetmath for a weak Hopf algebra.Therefore, the weak Hopf algebra is considered by some authors as an importantconcept in quantum operator algebraPlanetmathPlanetmathPlanetmath (QOA).

0.1 Examples of weak Hopf algebras

  • (1)

    We refer here to Bais et al. (2002). Let G be a non-Abelian groupMathworldPlanetmathand HG a discrete subgroup. Let F(H) denote the spaceof functions on H and H the group algebraPlanetmathPlanetmath (which consistsof the linear span of group elements with the group structureMathworldPlanetmath).

    The quantum double D(H) (Drinfeld, 1987) is defined by

    D(H)=F(H)~H,(0.4)

    where, for xH, the twisted tensor product is specified by

    ~(f1h1)(f2h2)(x)=f1(x)f2(h1xh1-1)h1h2.(0.5)

    The physical interpretationMathworldPlanetmath is often to take H as the ‘electric gauge group’ and F(H) as the ‘magnetic symmetryMathworldPlanetmathPlanetmathPlanetmath’ generated by {fe} . In terms of the counit ε, the doubleD(H) has a trivial representation given by ε(fh)=f(e) . We next look at certain features of this construction.

    For the purpose of braiding relationsMathworldPlanetmathPlanetmathPlanetmath there is an R matrix, RD(H)D(H), leading to the operator

    σ(ΠαAΠβB)(R),(0.6)

    in terms of the Clebsch–Gordan series ΠαAΠβBNαβCABγΠγC, andwhere σ denotes a flip operator. The operator 2 is sometimes called the monodromyMathworldPlanetmath orAharanov–Bohm phase factor. In the case of a condensate ina state |v in the carrierPlanetmathPlanetmath space of somerepresentationPlanetmathPlanetmath ΠαA . One considers the maximal HopfsubalgebraPlanetmathPlanetmath T of a Hopf algebra A for which |vis T–invariantMathworldPlanetmath; specifically  :

    ΠαA(P)|v=ε(P)|v,PT.(0.7)
  • (2)

    For the second example, consider A=F(H) . The algebra offunctions on H can be broken to the algebra of functions onH/K, that is, to F(H/K), where K is normal in H, that is,HKH-1=K . Next, consider A=D(H) . On breaking a purelyelectric condensate |v, the magnetic symmetryremains unbroken, but the electric symmetry H is broken toNv, with NvH, the stabilizerMathworldPlanetmath of |v . From this we obtain T=F(H)~Nv .

  • (3)

    In Nikshych and Vainerman (2000) quantum groupoids (as weakC*–Hopf algebras, see below) were studied in relationship to thenoncommutative symmetries of depth 2 von Neumann subfactors. If

    ABB1B2(0.8)

    is the Jones extensionPlanetmathPlanetmathPlanetmath induced by a finite index depth 2inclusion AB of II1 factors, then Q=AB2admits a quantum groupoid structure and acts on B1, so that B=B1Q and B2=B1Q . Similarly, in Rehren (1997)‘paragroups’ (derived from weak C*–Hopf algebras) comprise(quantum) groupoidsPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath of equivalence classesMathworldPlanetmathPlanetmath such as associated with6j–symmetry groups (relative to a fusion rules algebra). Theycorrespond to type II von Neumann algebrasMathworldPlanetmath in quantum mechanics,and arise as symmetries where the local subfactors (in the senseof containment of observables within fields) have depth 2 in theJones extension. Related is how a von Neumann algebra N, such asof finite index depth 2, sits inside a weak Hopf algebra formed asthe crossed product NA (Böhm et al. 1999).

  • (4)

    In Mack and Schomerus (1992) using a more general notion of theDrinfeld construction, develop the notion of a quasitriangular quasi–Hopf algebra (QTQHA) is developed with the aimof studying a range of essential symmetries with specialproperties, such the quantum groupPlanetmathPlanetmathPlanetmathPlanetmath algebra Uq(sl2) with|q|=1 . If qp=1, then it is shown that a QTQHA iscanonically associated with Uq(sl2). Such QTQHAs areclaimed as the true symmetries of minimalPlanetmathPlanetmath conformal fieldtheories.

1 Definitions of Related Concepts

Let us recall two basic concepts of quantum operator algebra that are essential to Algebraic Quantum TheoriesPlanetmathPlanetmath.

1.1 Definition of a Von Neumann Algebra.

Let denote a complex (separable) Hilbert spaceMathworldPlanetmath. A vonNeumann algebra 𝒜 acting on is a subset of the algebra ofall bounded operatorsMathworldPlanetmathPlanetmath () such that:

  • (1)

    𝒜 is closed underPlanetmathPlanetmath the adjointPlanetmathPlanetmathPlanetmathPlanetmath operation (with theadjoint of an element T denoted by T*).

  • (2)

    𝒜 equals its bicommutant, namely:

    𝒜={A():B(),C𝒜,(BC=CB)(AB=BA)}.(1.1)

If one calls a commutant of a set 𝒜 the special set ofbounded operators on () which commute with all elements in𝒜, then this second condition implies that the commutant of thecommutant of 𝒜 is again the set 𝒜.

On the other hand, a von Neumann algebra 𝒜 inherits aunital subalgebra from (), and according to thefirst condition in its definition 𝒜 does indeed inherit a*-subalgebra structure, as further explained in the nextsectionMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath on C*-algebras. Furthermore, we have notableBicommutant Theorem which states that 𝒜 is a vonNeumann algebra if and only if A is a *-subalgebra ofL(H), closed for the smallest topologyMathworldPlanetmath defined by continuousmaps (ξ,η)(Aξ,η) for all <Aξ,η)>where <.,.> denotes the inner productMathworldPlanetmath defined on H . Forfurther instruction on this subject, see e.g. Aflsen and Schultz(2003), Connes (1994).

1.2 Definition of a Hopf algebra

Firstly, a unital associative algebra consists of a linear spacePlanetmathPlanetmathA together with two linear maps

m:AAA,(multiplication)(1.2)
η:A,(unity)

satisfying the conditions

m(m𝟏)=m(𝟏m)(1.3)
m(𝟏η)=m(η𝟏)=id.

This first condition can be seen in terms of a commuting diagram :

AAAmidAAidmmAA@ >mA(1.4)

Next suppose we consider ‘reversing the arrows’, and take analgebra A equipped with a linear homorphisms Δ:AAA, satisfying, for a,bA :

Δ(ab)=Δ(a)Δ(b)(1.5)
(Δid)Δ=(idΔ)Δ.

We call Δ a comultiplication, which is said to becoasociative in so far that the following diagram commutes

AAAΔidAAidΔΔAA@ <ΔA(1.6)

There is also a counterpart to η, the counity mapε:A satisfying

(idε)Δ=(εid)Δ=id.(1.7)

A bialgebraPlanetmathPlanetmathPlanetmath (A,m,Δ,η,ε) is a linear space A with maps m,Δ,η,εsatisfying the above properties.

Now to recover anything resembling a group structure, we mustappend such a bialgebra with an antihomomorphism S:AA,satisfying S(ab)=S(b)S(a), for a,bA . This map isdefined implicitly via the property :

m(Sid)Δ=m(idS)Δ=ηε.(1.8)

We call S the antipode map. A Hopf algebra is thena bialgebra (A,m,η,Δ,ε) equipped with an antipodemap S .

CommutativePlanetmathPlanetmathPlanetmath and noncommutative Hopf algebras form the backbone ofquantum ‘groups’ and are essential to the generalizationsPlanetmathPlanetmath ofsymmetry. Indeed, in most respects a quantum ‘group’ is identifiablewith a Hopf algebra. When such algebras are actuallyassociated with proper groups of matrices there isconsiderable scope for their representations on both finiteand infinite dimensional Hilbert spaces.

References

  • 1 E. M. Alfsen and F. W. Schultz: GeometryMathworldPlanetmath of State SpacesMathworldPlanetmath of Operator Algebras, Birkhäuser, Boston–Basel–Berlin (2003).
  • 2 I. Baianu : CategoriesMathworldPlanetmath, FunctorsMathworldPlanetmath and Automata Theory: A Novel Approach to Quantum Automata through Algebraic–Topological Quantum Computations., Proceed. 4th Intl. Congress LMPS, (August-Sept. 1971).
  • 3 I. C. Baianu, J. F. Glazebrook and R. Brown.: A Non–Abelian, Categorical Ontology of Spacetimes and Quantum Gravity., Axiomathes 17,(3-4): 353-408(2007).
  • 4 I.C.Baianu, R. Brown J.F. Glazebrook, and G. Georgescu, Towards Quantum Non–Abelian Algebraic Topology. in preparation, (2008).
  • 5 F.A. Bais, B. J. Schroers and J. K. Slingerland: Broken quantum symmetry and confinement phases in planar physics, Phys. Rev. Lett. 89 No. 18 (1–4): 181–201 (2002).
  • 6 J.W. Barrett.: Geometrical measurements in three-dimensional quantum gravity.Proceedings of the Tenth Oporto Meeting on Geometry, Topology and Physics (2001).Intl. J. Modern Phys. A 18 , October, suppl., 97–113 (2003).
  • 7 M. R. Buneci.: Groupoid RepresentationsPlanetmathPlanetmathPlanetmathPlanetmath, (orig. title “Reprezentari de Grupoizi”),Ed. Mirton: Timishoara (2003).
  • 8 M. Chaician and A. Demichev: Introduction to Quantum Groups, World Scientific (1996).
  • 9 Coleman and De Luccia: Gravitational effects on and of vacuum decay., Phys. Rev. D 21: 3305 (1980).
  • 10 L. Crane and I.B. Frenkel. Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases. Topology and physics. J. Math. Phys. 35 (no. 10): 5136–5154 (1994).
  • 11 W. Drechsler and P. A. Tuckey: On quantum and parallel transport in a Hilbert bundle over spacetime., Classical and Quantum Gravity, 13:611-632 (1996).doi: 10.1088/0264–9381/13/4/004
  • 12 V. G. Drinfel’d: Quantum groups, In Proc. Intl. Congress ofMathematicians, Berkeley 1986, (ed. A. Gleason), Berkeley, 798-820 (1987).
  • 13 G. J. Ellis: Higher dimensional crossed modules of algebras,J. of Pure Appl. Algebra 52 (1988), 277-282.
  • 14 P.. I. Etingof and A. N. Varchenko, Solutions of the Quantum Dynamical Yang-Baxter Equation and Dynamical Quantum Groups, Comm.Math.Phys., 196: 591-640 (1998).
  • 15 P. I. Etingof and A. N. Varchenko: Exchange dynamical quantumgroups, Commun. Math. Phys. 205 (1): 19-52 (1999)
  • 16 P. I. Etingof and O. Schiffmann: Lectures on the dynamical Yang–Baxter equations, in Quantum Groups and Lie Theory (Durham, 1999), pp. 89-129, Cambridge University Press, Cambridge, 2001.
  • 17 B. Fauser: A treatise on quantum Clifford AlgebrasPlanetmathPlanetmath. Konstanz,Habilitationsschrift.
    arXiv.math.QA/0202059 (2002).
  • 18 B. Fauser: Grade Free productMathworldPlanetmath Formulae from Grassman–Hopf Gebras.Ch. 18 in R. Ablamowicz, Ed., Clifford Algebras: Applications to Mathematics, Physics and Engineering, Birkhäuser: Boston, Basel and Berlin, (2004).
  • 19 J. M. G. Fell.: The Dual SpacesMathworldPlanetmathPlanetmathPlanetmath of C*–Algebras., Transactions of the AmericanMathematical Society, 94: 365–403 (1960).
  • 20 F.M. Fernandez and E. A. Castro.: (Lie) Algebraic Methods in Quantum Chemistry and Physics., Boca Raton: CRC Press, Inc (1996).
  • 21 R. P. Feynman: Space–Time Approach to Non–Relativistic Quantum Mechanics, Reviewsof Modern Physics, 20: 367–387 (1948). [It is also reprinted in (Schwinger 1958).]
  • 22 A. Fröhlich: Non–Abelian Homological Algebra. I.Derived functorsMathworldPlanetmath and satellites., Proc. London Math. Soc., 11(3): 239–252 (1961).
  • 23 R. Gilmore: Lie GroupsMathworldPlanetmath, Lie Algebras and Some of Their Applications.,Dover Publs., Inc.: Mineola and New York, 2005.
  • 24 P. Hahn: Haar measure for measure groupoids., Trans. Amer. Math. Soc. 242: 1–33(1978).
  • 25 P. Hahn: The regular representationsPlanetmathPlanetmath of measure groupoids., Trans. Amer. Math. Soc. 242:34–72(1978).
  • 26 R. Heynman and S. Lifschitz. 1958. Lie Groups and Lie Algebras., New York and London: Nelson Press.
  • 27 C. Heunen, N. P. Landsman, B. Spitters.: A topos for algebraic quantum theory, (2008)
    arXiv:0709.4364v2 [quant–ph]
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/5 4:38:35