请输入您要查询的字词:

 

单词 WeakHopfCalgebra
释义

weak Hopf C*-algebra


Definition 0.1.

A weak Hopf C*-algebraMathworldPlanetmathPlanetmathPlanetmath is defined as a weak Hopf algebraPlanetmathPlanetmathPlanetmathPlanetmath (http://planetmath.org/WeakHopfCAlgebra) which admits a faithfulPlanetmathPlanetmathPlanetmath *–representation on a Hilbert spaceMathworldPlanetmath. The weak C*–Hopf algebraMathworldPlanetmathPlanetmathPlanetmath is therefore much more likely to be closely related to a quantum groupoidPlanetmathPlanetmath than the weak Hopf algebra. However, one can argue that locally compact groupoidsPlanetmathPlanetmath equipped with a Haar measure are even closer to defining quantum groupoids (http://planetmath.org/QuantumGroupoids2).

There are already several, significant examples that motivate the consideration of weak C*-Hopf algebras which also deserve mentioning in the context of standard quantum theoriesPlanetmathPlanetmath. Furthermore, notions such as (proper) weak C*-algebroids can provide the main framework for symmetry breaking and quantum gravity that we are considering here. Thus, one may consider the quasi-group symmetriesPlanetmathPlanetmath constructed by means of special transformationsPlanetmathPlanetmath of the coordinate space M.

Remark:Recall that the weak Hopf algebra is defined as the extensionPlanetmathPlanetmathPlanetmath of a Hopf algebra by weakeningthe definining axioms of a Hopf algebra as follows:

  • (1)

    The comultiplication is not necessarily unit-preserving.

  • (2)

    The counit ε is not necessarily a homomorphismMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath of algebras.

  • (3)

    The axioms for the antipode map S:AA with respect to thecounit are as follows. For all hH,

    m(idS)Δ(h)=(εid)(Δ(1)(h1))(0.1)
    m(Sid)Δ(h)=(idε)((1h)Δ(1))
    S(h)=S(h(1))h(2)S(h(3)).

These axioms may be appended by the following commutative diagramsMathworldPlanetmath

AASidAAΔmA@ >uεA  AAidSAAΔmA@ >uεA(0.2)

along with the counit axiom:

\\xymatrix@C=3pc@R=3pcAA\\ar[d]ε1&A\\ar[l]Δ\\ar[dl]idA\\ar[d]ΔA&AA\\ar[l]1ε(0.3)

Some authors substitute the term quantum groupoid for a weak Hopf algebra.

0.1 Examples of weak Hopf C*-algebra.

  • (1)

    In Nikshych and Vainerman (2000) quantum groupoids were considered as weakC*–Hopf algebras and were studied in relationship to thenoncommutative symmetries of depth 2 von Neumann subfactors. If

    ABB1B2(0.4)

    is the Jones extension induced by a finite index depth 2inclusion AB of II1 factors, then Q=AB2admits a quantum groupoid structureMathworldPlanetmath and acts on B1, so that B=B1Q and B2=B1Q . Similarly, in Rehren (1997)‘paragroups’ (derived from weak C*–Hopf algebras) comprise(quantum) groupoidsPlanetmathPlanetmathPlanetmathPlanetmath of equivalence classesMathworldPlanetmathPlanetmath such as associated with6j–symmetry groups (relative to a fusion rules algebra). Theycorrespond to type II von Neumann algebrasMathworldPlanetmath in quantum mechanics,and arise as symmetries where the local subfactors (in the senseof containment of observables within fields) have depth 2 in theJones extension. Related is how a von Neumann algebra N, such asof finite index depth 2, sits inside a weak Hopf algebra formed asthe crossed product NA (Böhm et al. 1999).

  • (2)

    In Mack and Schomerus (1992) using a more general notion of theDrinfeld construction, develop the notion of a quasitriangular quasi–Hopf algebra (QTQHA) is developed with the aimof studying a range of essential symmetries with specialproperties, such the quantum groupPlanetmathPlanetmathPlanetmathPlanetmath algebra Uq(sl2) with|q|=1 . If qp=1, then it is shown that a QTQHA iscanonically associated with Uq(sl2). Such QTQHAs areclaimed as the true symmetries of minimalPlanetmathPlanetmath conformal fieldtheories.

0.2 Von Neumann Algebras (or W*-algebras).

Let denote a complex (separablePlanetmathPlanetmath) Hilbert space. A vonNeumann algebra 𝒜 acting on is a subset of the *–algebra ofall bounded operatorsMathworldPlanetmathPlanetmath () such that:

  • (1)

    𝒜 is closed underPlanetmathPlanetmath the adjoint operation (with theadjoint of an element T denoted by T*).

  • (2)

    𝒜 equals its bicommutant, namely:

    𝒜={A():B(),C𝒜,(BC=CB)(AB=BA)}.(0.5)

If one calls a commutant of a set 𝒜 the special set ofbounded operators on () which commute with all elements in𝒜, then this second condition implies that the commutant of thecommutant of 𝒜 is again the set 𝒜.

On the other hand, a von Neumann algebra 𝒜 inherits aunital subalgebraMathworldPlanetmathPlanetmath from (), and according to thefirst condition in its definition 𝒜 does indeed inherit a*-subalgebra structure, as further explained in the nextsectionPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath on C*-algebras. Furthermore, we have the notableBicommutant Theorem which states that 𝒜 is a vonNeumann algebra if and only if A is a *-subalgebra ofL(H), closed for the smallest topologyMathworldPlanetmath defined by continuousmaps (ξ,η)(Aξ,η) for all <Aξ,η)>where <.,.> denotes the inner product defined on H . Forfurther instruction on this subject, see e.g. Aflsen and Schultz(2003), Connes (1994).

CommutativePlanetmathPlanetmathPlanetmathPlanetmath and noncommutative Hopf algebras form the backbone ofquantum ‘groups’ and are essential to the generalizationsPlanetmathPlanetmath ofsymmetry. Indeed, in most respects a quantum ‘group’ is identifiablewith a Hopf algebra. When such algebras are actuallyassociated with proper groups of matrices there isconsiderable scope for their representations on both finiteand infinite dimensional Hilbert spaces.

References

  • 1 E. M. Alfsen and F. W. Schultz: Geometry of State SpacesMathworldPlanetmath of Operator Algebras, Birkhäuser, Boston–Basel–Berlin (2003).
  • 2 I. Baianu : CategoriesMathworldPlanetmath, FunctorsMathworldPlanetmath and Automata Theory: A Novel Approach to Quantum Automata through Algebraic–Topological Quantum Computations., Proceed. 4th Intl. Congress LMPS, (August-Sept. 1971).
  • 3 I. C. Baianu, J. F. Glazebrook and R. Brown.: A Non–Abelian, Categorical Ontology of Spacetimes and Quantum Gravity., Axiomathes 17,(3-4): 353-408(2007).
  • 4 I.C.Baianu, R. Brown J.F. Glazebrook, and G. Georgescu, Towards Quantum Non–Abelian Algebraic Topology. in preparation, (2008).
  • 5 F.A. Bais, B. J. Schroers and J. K. Slingerland: Broken quantum symmetry and confinement phases in planar physics, Phys. Rev. Lett. 89 No. 18 (1–4): 181–201 (2002).
  • 6 M. R. Buneci.: Groupoid RepresentationsPlanetmathPlanetmathPlanetmathPlanetmath, Ed. Mirton: Timishoara (2003).
  • 7 M. Chaician and A. Demichev: Introduction to Quantum Groups, World Scientific (1996).
  • 8 L. Crane and I.B. Frenkel. Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases. Topology and physics. J. Math. Phys. 35 (no. 10): 5136–5154 (1994).
  • 9 V. G. Drinfel’d: Quantum groups, In Proc. Intl. Congress ofMathematicians, Berkeley 1986, (ed. A. Gleason), Berkeley, 798-820 (1987).
  • 10 G. J. Ellis: Higher dimensional crossed modules of algebras,J. of Pure Appl. Algebra 52 (1988), 277-282.
  • 11 P.. I. Etingof and A. N. Varchenko, Solutions of the Quantum Dynamical Yang-Baxter Equation and Dynamical Quantum Groups, Comm.Math.Phys., 196: 591-640 (1998).
  • 12 P. I. Etingof and A. N. Varchenko: Exchange dynamical quantum groups, Commun. Math. Phys. 205 (1): 19-52 (1999)
  • 13 P. I. Etingof and O. Schiffmann: Lectures on the dynamical Yang–Baxter equations, in Quantum Groups and Lie Theory (Durham, 1999), pp. 89-129, Cambridge University Press, Cambridge, 2001.
  • 14 B. Fauser: A treatise on quantum Clifford Algebras. Konstanz, Habilitationsschrift.
    arXiv.math.QA/0202059 (2002).
  • 15 B. Fauser: Grade Free productMathworldPlanetmath Formulae from Grassman–Hopf Gebras. Ch. 18 in R. Ablamowicz, Ed., Clifford Algebras: Applications to Mathematics, Physics and Engineering, Birkhäuser: Boston, Basel and Berlin, (2004).
  • 16 J. M. G. Fell.: The Dual SpacesMathworldPlanetmathPlanetmath of C*–Algebras., Transactions of the AmericanMathematical Society, 94: 365–403 (1960).
  • 17 F.M. Fernandez and E. A. Castro.: (Lie) Algebraic Methods in Quantum Chemistry and Physics., Boca Raton: CRC Press, Inc (1996).
  • 18 R. P. Feynman: Space–Time Approach to Non–Relativistic Quantum Mechanics, Reviewsof Modern Physics, 20: 367–387 (1948). [It is also reprinted in (Schwinger 1958).]
  • 19 A. Fröhlich: Non–Abelian Homological Algebra. I.Derived functorsMathworldPlanetmath and satellites., Proc. London Math. Soc., 11(3): 239–252 (1961).
  • 20 R. Gilmore: Lie GroupsMathworldPlanetmath, Lie Algebras and Some of Their Applications.,Dover Publs., Inc.: Mineola and New York, 2005.
  • 21 P. Hahn: Haar measure for measure groupoids., Trans. Amer. Math. Soc. 242: 1–33(1978).
  • 22 P. Hahn: The regular representationsPlanetmathPlanetmath of measure groupoids., Trans. Amer. Math. Soc. 242:34–72(1978).
  • 23 R. Heynman and S. Lifschitz. 1958. Lie Groups and Lie Algebras., New York and London: Nelson Press.
  • 24 Leonid Vainerman, Editor. 2003.https://perswww.kuleuven.be/ u0018768/artikels/strasbourg.pdfLocally Compact Quantum Groups and Groupoids: Proceedings of the Meeting of Theoretical Physicists and Mathematicians., Strasbourg, February 21-23, 2002., Walter de Gruyter Gmbh & Co: Berlin.
  • 25 http://planetmath.org/?op=getobj&from=books&id=294Stefaan Vaes and Leonid Vainerman.2003. On Low-Dimensional Locally CompactQuantum Groups in Locally Compact Quantum Groups and Groupoids: Proceedings of the Meeting of Theoretical Physicists and Mathematicians
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 10:31:53