请输入您要查询的字词:

 

单词 CompleteUltrametricField
释义

complete ultrametric field


A field K equipped with a non-archimedean valuation  ||  is called a non-archimedean field or also an ultrametric field, since the valuationMathworldPlanetmathPlanetmath the ultrametric  d(x,y):=|x-y|  of K.

Theorem.

Let (K,d) be a completePlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath (http://planetmath.org/Complete) ultrametric field.  A necessary and sufficient condition for the convergence of the series

a1+a2+a3+(1)

in K is that

limnan= 0.(2)

Proof.  Let ε be any positive number.  When (1) convergesPlanetmathPlanetmath, it satisfies the Cauchy condition and therefore exists a number mε such that surely

|am+1|=|j=1m+1aj-j=1maj|<ε

for all  mmε;  thus (2) is necessary.  On the contrary, suppose the validity of (2).  Now one may determine such a great number nε that

|am|<ε  mnε.

No matter how great is the natural numberMathworldPlanetmath n, the ultrametric then guarantees the inequality

|am+am+1++am+n|max{|am|,|am+1|,,|am+n|}<ε

always when  mnε.  Thus the partial sums of (1) form a Cauchy sequencePlanetmathPlanetmath, which converges in the complete field.  Hence the series (1) converges, and (2) is sufficient.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 12:35:50