请输入您要查询的字词:

 

单词 ComplexTangentAndCotangent
释义

complex tangent and cotangent


The tangentPlanetmathPlanetmathPlanetmath and the cotangent function for complex values of the z are defined with the equations

tanz:=sinzcosz,cotz:=coszsinz.

Using the Euler’s formulae (http://planetmath.org/ComplexSineAndCosine), one also can define

tanz:=-ieiz-e-izeiz+e-iz,cotz:=ieiz+e-izeiz-e-iz.(1)

The subtraction formulae of cosine and sine (http://planetmath.org/ComplexSineAndCosine) yield an additional between the cotangent and tangent:

cot(π2-z)=cos(π2-z)sin(π2-z)=cosπ2cosz+sinπ2sinzsinπ2cosz-cosπ2sinz=sinzcosz=tanz.

Thus the properties of the tangent are easily derived from the corresponding properties of the cotangent.

Because of the identic equation  cos2z+sin2z=1  the cosine and sine do not vanish simultaneously, and so their quotient cotz is finite in all finite points z of the complex plane except in the zeros  z=nπ  (n=0,±1,±2,) of sinz, where cotz becomes infinite.  We shall see that these multiples of π are simple polesMathworldPlanetmathPlanetmath of cotz.

If one moves from z to z+π, then both cosz and sinz change their signs (cf. antiperiodic functionMathworldPlanetmath), and therefore their quotient remains unchanged.  Accordingly, π is a period of cotz.  But if ω is an arbitrary period of cotz, we have  cot(z+ω)=cotz,  and especially  z=0 gives  cotω=;  then (1) says that eiω=e-iω,  i.e.  e2iω=1.  Since the prime periodPlanetmathPlanetmathPlanetmath of the complex exponential function is 2iπ, the last equation is valid only for the values  ω=nπ  (n=0,±1,±2,).  Thus we have shown that the prime period of cotz is π.

We know that

sinzz=sinz-sin0zcos0=1asz0;

therefore

zcotz=zsinzcosz1cos0=1asz0.

This result, together with

cotzasz0,

means that  z=0  is a simple pole of cotz.

Because of the periodicity, cotz has the simple poles in the pointsz=0,±π,±2π,.  Since one has the derivative

dcotzdz=-1sin2z,

cotz is holomorphic in all finite points except those poles, which accumulate only to the point  z=.  Thus the cotangent is a meromorphic function.  The same concerns naturally the tangent function.

As all meromorphic functions, the cotangent may be expressed as a series with the partial fraction (http://planetmath.org/PartialFractionsOfExpressions) terms of the form ajk(z-pj)k, where pj’s are the poles — see this entry (http://planetmath.org/ExamplesOfInfiniteProducts).

The real (http://planetmath.org/CmplexFunction) and imaginary partsDlmfMathworld of tangent and cotangent are seen from the formulae

tan(x+iy)=sinxcosx+isinhycoshycos2x+sinh2y,
cot(x+iy)=sinxcosx-isinhycoshysin2x+sinh2y,

which may be derived from (1) by substituting  z:=x+iy(x,y).

References

  • 1 R. Nevanlinna & V. Paatero: Funktioteoria.  Kustannusosakeyhtiö Otava. Helsinki (1963).
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 16:13:30