请输入您要查询的字词:

 

单词 WirtingersInequality
释义

Wirtinger’s inequality


Theorem: Let f: be a periodic function of period 2π, which iscontinuousMathworldPlanetmathPlanetmath and has a continuous derivativePlanetmathPlanetmath throughout , and suchthat

02πf(x)=0.(1)

Then

02πf2(x)𝑑x02πf2(x)𝑑x(2)

with equality if and only if f(x)=acosx+bsinx for some a and b(or equivalently f(x)=csin(x+d) for some c and d).

Proof: Since Dirichlet’s conditions are met, wecan write

f(x)=12a0+n1(ansinnx+bncosnx)

and moreover a0=0 by (1). By Parseval’s identity,

02πf2(x)𝑑x=n=1(an2+bn2)

and

02πf2(x)𝑑x=n=1n2(an2+bn2)

and since the summands are all 0, we get (2),with equality if and only if an=bn=0 for all n2.

Hurwitz used Wirtinger’s inequalityMathworldPlanetmath in his tidy 1904proof of the isoperimetric inequalityMathworldPlanetmath.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/5 1:56:09